• 제목/요약/키워드: leakage accidents

검색결과 281건 처리시간 0.029초

의료용 절연변압기에 연결하는 의료 IT시스템의 안전에 관한 연구 (A Study on the Safety of Medical IT System connecting Medical Insulation Transformer in Medical Locations)

  • 김세동;김은식;박정일;최형식
    • 조명전기설비학회논문지
    • /
    • 제25권5호
    • /
    • pp.61-66
    • /
    • 2011
  • An accidental disconnection of power supply for operating theatres may result in fatal accidents. Thus, it is necessary to import the electric safety system in medical locations. This paper shows an analysis of simulation for the safety in medical IT system based on KS C IEC 60364-7-710(Electrical Installations of Buildings - Requirements for special installations or locations - Medical locations). The analysis was progressed by measuring leakage currents according to variation of volts, circuits and loads. And it was made database for calculation the reasonable length of branch circuit.

금속 자기기억법 활용 보일러 튜브의 미소 결함 검출력 연구 (Study of Boiler Tube Micro Crack Detection Ability by Metal Magnetic Memory)

  • 서정석;명주홍;방지예;정계조
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.93-96
    • /
    • 2022
  • The boiler tubes of thermal power plants are exposed to harsh environment of high temperature and high pressure, and the deterioration state of materials rapidly increases. In particular, parent material and welds of the materials used are subjected to a temperature change and various constraints, resulting in deformation and its growth, resulting in frequent leakage accidents caused by tube failure. The power plant checks the integrity of boiler tubes through non-destructive testing as it may act as huge costs loss and limitation of power supply during power station shutdown period due to boiler tube leakage. However, the current non-destructive testing is extremely limited in the field to detect micro cracks. In this study, the ability of metal magnetic memory technique to detect flaws of size that are difficult to inspect by the visual or general non-destructive methods was verified in the early stage of their occurrence.

IoT 기반 산업용 밸브 안전관리 시스템 구성장치의 성능검증 방안 개발 (Development of Performance Verification Method for Components of IoT-based Industrial Valve Safety Management System)

  • 김재옥;유근준;이경식;김정훈
    • 한국가스학회지
    • /
    • 제24권5호
    • /
    • pp.10-19
    • /
    • 2020
  • 석유화학 플랜트 및 가스 시설물의 밸브 사고는 심각한 인적·물적 피해를 유발하며 이러한 시설에서의 주요사고 원인은 밸브에서의 가스 누출로 인한 흡입, 중독, 화재 및 폭발사고이다. 가스 누출을 예방하기 위한 점검은 인력에 의해 직접 검사가 이루어지는 경우가 많으며, 점검자는 가스 누출사고의 위험에 직접적으로 노출된다. 이러한 사고를 예방하기 위하여 IoT 기반 위험 분석 및 위험성 평가 모니터링 시스템과 자동제어 시스템을 적용하였다. 이를 통하여 산업용 밸브의 내·외부 가스 누출을 검지하고 하이브리드 센서를 통한 국부 및 전역 센싱으로 플랜트 현장에서의 밸브 이상으로 인한 사고를 실시간으로 모니터링 할 수 있다. 이와 같이 새로운 산업용 밸브 안전관리 시스템이 개발됨에 따라 관련 구성장치에 대한 성능 및 현장부합성에 대한 평가방안이 요구되었다. 본 연구에서는 산업용 유무선 통신을 지원하고 가스센서와 광섬유센서를 포함하는 방폭형 하이브리드 센싱 시스템과 자동제어가 가능한 액추에이터 패키지의 성능을 평가하기 위한 시험 항목 및 방법을 제시하였고 시스템의 신뢰성을 확보할 수 있는 구성장치의 성능검증 방안을 개발하였다.

독성 가스 누출 시 건물 방향이 대피 기준에 미치는 영향에 관한 수치 해석 연구 (A Numerical Study of Building Orientation Effects on Evacuation Standard in Case of Toxic Gas Leakage)

  • 조승범
    • 한국가스학회지
    • /
    • 제27권4호
    • /
    • pp.12-18
    • /
    • 2023
  • 독성 가스 누출 사고 발생 시 인명 피해를 최소화하기 위해서는 사고 시나리오에 따른 적절한 대피 방법이 사전에 수립되어야 한다. 본 연구에서는 동일 누출 조건에서 건축물의 방향과 산업단지 위치가 실내 농도 증가와 실외 확산에 미치는 영향을 살펴보고 효과적인 대피 기준을 마련하였다. 또한 이러한 기준을 바탕으로 화학사고 인명 피해 최소화라는 관점에서 건물을 건설할 때 건물 방향에 대한 기준도 마련하였다. 건물의 방향이 누출 방향에 대해 정면, 측면, 후면인 경우에 대해 전산 수치 해석을 수행하였으며, 그 결과 건물 창문이 누출되어 오는 방향과 마주보고 있을 때의 실내 오염농도가 반대편에 창문이 있을 때의 실내 오염농도와 비교하여 120배 정도 높게 나왔다. 또한, 급격한 실내 농도 증가율로 동일 시간에 실내 공간이 2배 이상 독성 가스 물질로 가득하게 되었다. 이러한 현상은 건물 창문이 정면에 위치한 경우 창문 주위의 압력 차와 속도 저하로 건물 주위에 독성 가스가 정체하게 되는 것으로 나타났다. 본 연구 결과를 바탕으로 최적 대피를 위한 건축물 방향 기준을 설정한다면 화학사고 발생 시 주민들의 피해를 최소화하는 데 도움이 될 것으로 판단된다.

안전한 캠핑 문화의 정착을 위한 야외용 프로판 연소기 안전기준 실증 연구 (A Verification Test on Safety Standards of Portable Propane Gas Stove for Safe Camping Culture)

  • 안현수;최슬기;이창언;김영구
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.293-294
    • /
    • 2014
  • In Korea, only butane gas could be used as fuel gas of the outdoor gas stove. However, butane is not vaporized well at low temperatures. For this reason, in the field, nozzle of the portable butane gas stove is converted illegally to use propane gas. Because vapor pressure of propane gas is higher than that of butane gas at same temperature, gas accidents such as gas leakage could be occurred. To prevent gas accidents and use portable propane gas stoves safely, international standards need to be analyzed and verification tests need to be performed with prototype stove. This study could suggest to revise standard for safety improvement with portable propane gas stoves.

  • PDF

LPG 탱크로리 수송중 위험성 평가에 관한 연구 (A Study on the Risk Assessment in LPG Transportation by Tank Lorry)

  • 이재준;김윤화;윤성렬;엄성인;백종배;고재욱
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.86-92
    • /
    • 1997
  • Demand of LPG and LNG will increase continuously due to high calories, clearness, and convenience for usage. These gases are used widely for power plants, industrial plants, and domestic fuel. But accidents related with gas are increasing in proportion to increment of gas usage. Especially LPG has high ignitability due to weak dispersion to air and accumulation at low place because LPG is heavier than air. There are many hazards during transportation as well as production, storage, and usage of LPG. Commonly, tank lorry is used for inland transportation of LPG. If tank lorry were to raise leakage incidents and then LPG released during transporting, the accidents cause serious effects on the environment as well as human damage of surrounding area. In this study, therefore, hazards which cause LPG of tank lorry to leak during transportation were identified and risk of LPG transportation was assessed quantitatively. Also, the result of this study might be a useful measure for predicting damage and preparing safe transportation strategies of LPG tank lorry.

  • PDF

가스용 저압염화비닐호스 경년열화분석에 관한 연구 (A Study on the Degradation Analysis of PVC Hose for Gas)

  • 김완진;이영섭;류근준;김현기
    • 한국안전학회지
    • /
    • 제24권2호
    • /
    • pp.37-41
    • /
    • 2009
  • PVC hose for gas is used widely in many of places which is used for connector between combustor and gas cock. In this study, it is collected by 5 regional area as Gyeonggi, Jeonnam, Gyeongbuk, Jeju and Gangwon and tested in leakage, hardness, anti-low temperature. As a result, the color on it is started to change rapidly when it is installed. Some of specimen are broken in bending test after keeping in $-25^{\circ}C$, 24hours. It's hardness has a tendency to increase gradually. If hardness of hose is increased, PVC hose is separated easily from cock or combustor so that LP gas or city gas can be escaped. For prevention of gas leakage accidents of PVC hose, the available period of it should be presented.

수소가스 누출 시나리오에 따른 피해예측에 관한 연구 (Study on the Consequence Analysis about Leakage Scenarios for Hydrogen Gas)

  • 김태훈;오영달;이만수
    • 대한안전경영과학회지
    • /
    • 제16권4호
    • /
    • pp.159-165
    • /
    • 2014
  • For the hydrogen economy system being tried starting with the 21st century, the fields that was not dealt with so far, such as the safety measure for large leakage accidents, the safety problem at infrastructures like a hydrogen station, the safety problem in terms of automobiles depending on introduction of hydrogen cars, the safety problem in a supply for homes like fuel cells, etc., are being deeply reviewed. In order to establish a safety control system, an essential prerequisite in using and commercializing hydrogen gas as an efficient energy source, it is necessary to conduct an analysis, such as analysis of hydrogen accident examples, clarification of physical mechanisms, qualitative and quantitative evaluation of safety, development of accident interception technologies, etc. This study prepared scenarios of hydrogen gas leakage that can happen at hydrogen stations, and predicted damage when hydrogen leaks by using PHAST for this.

딥러닝 기반 도시가스 누출량 예측 모니터링 시스템 (An Predictive System for urban gas leakage based on Deep Learning)

  • 안정미;김경영;김동주
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.41-44
    • /
    • 2021
  • In this paper, we propose a monitoring system that can monitor gas leakage concentrations in real time and forecast the amount of gas leaked after one minute. When gas leaks happen, they typically lead to accidents such as poisoning, explosion, and fire, so a monitoring system is needed to reduce such occurrences. Previous research has mainly been focused on analyzing explosion characteristics based on gas types, or on warning systems that sound an alarm when a gas leak occurs in industrial areas. However, there are no studies on creating systems that utilize specific gas explosion characteristic analysis or empirical urban gas data. This research establishes a deep learning model that predicts the gas explosion risk level over time, based on the gas data collected in real time. In order to determine the relative risk level of a gas leak, the gas risk level was divided into five levels based on the lower explosion limit. The monitoring platform displays the current risk level, the predicted risk level, and the amount of gas leaked. It is expected that the development of this system will become a starting point for a monitoring system that can be deployed in urban areas.

  • PDF

Evacuation Safety Evaluation of High School according to Hydrogen Fluoride Leakage

  • Boohyun Baek;Sanghun Han;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.255-266
    • /
    • 2024
  • The purpose is to evaluate evacuation safety by simulating the toxic effects of hydrogen fluoride leaks in areas surrounding national industrial complexes and to suggest alternatives for areas that do not satisfy evacuation safety. For human casualties caused by hydrogen fluoride leakage accidents, Available Safe Egress Time (ASET) is calculated by the toxic effects quantified with the Areal Locations of Hazardous Atmospheres (ALOHA), an off-site consequence assessment program. The Required Safe Egress Time (RSET) is calculated through Pathfinder, an evacuation simulation program. Evacuation safety is assessed by comparing ASET and RSET. The ALOHA program was used to evaluate the time to reach AEGL-2 concentration in 12 scenarios. The Pathfinder program was used to assess the total evacuation time of the high school among specific fire-fighting objects. Of the 12 accident scenarios, ASET was larger than RSET in the worst-case scenarios 1 and 9. For the remaining 10 accident scenarios, the ASET is smaller than the RSET, so we found that evacuation safety is not guaranteed, and countermeasures are required. Since evacuation safety is not satisfactory, we proposed to set up an evacuation area equipped with positive pressure equipment and air respirators inside specific fire-fighting objects such as the high school.