• Title/Summary/Keyword: leak test

Search Result 256, Processing Time 0.027 seconds

An Experimental Study on the Pumping Performance of the Turbo-Type Disk-Type Drag Pump (터보형 원판형 드래그펌프의 배기특성에 관한 실험적 연구)

  • Hwang Young-Kyu;Heo Joong-Sik;Kwon Myung-Keun;Lee Seung-Jae
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.577-580
    • /
    • 2002
  • In this paper, the pumping performance of the disk-type drag pump which works in the outlet pressure range from 4 to 0.001 Torr is studied experimentally. The pumping characteristics of various drag pumps are performed. The inlet pressures are measured for various outlet pressures of the test pump. The flow-meter method is adopted to calculate the pumping speed. Compression ratios and pumping speeds for the nitrogen gas are measured. The present experimental data show the leak-limited value of the compression ratio in the molecular transition region. The rotational speed of the pump is 24,000rpm. The inlet pressures are measured for various outlet pressures of the test pump. The ultimate Pressures for zero throughput are measured for three-stage, two-stage and single-stage disk-type, respectively.

  • PDF

A Study on the Hydrostatic Test of Slipper Pad for Hydraulic Piston Motor (유압 피스톤모터용 Slipper Pad의 정압시험에 관한 연구)

  • 함영복;김광영;김형의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.645-649
    • /
    • 1997
  • In case of swash plate type axial piston hydraulic motor, hydrostatic bearing used to achieve the lubrication effect on the mechanical sliding contact areas between the following parirs ; sliooer-pad and swash plate,piston and cylinder bore,valve plate and cylinder block, etc. This study discussed the basic charateristic for the hydrostatic slipper-pad bearings with the capillary or orifice restrictor under static load condition. And, we also development of hydrostatic bearing tester for hydrostatic balancing test of pistion & slipper-pad assembly, and some experimental data on supply pressure step responce are reported.

  • PDF

Cool-down test of HWR cryomodule for RAON

  • Kim, Y.;Lee, M.;Jo, Y.W.;Choi, J.W.;Kim, H.;Kim, W.K.;Kim, H.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.43-46
    • /
    • 2015
  • The heavy ion accelerator that will be built in Daejeon utilizes four types of superconducting cavities. Cryomodules holding the superconducting cavities in them supply thermal insulation for cavities operating in 4.3 K or 2.1 K. A Prototype of cryomodule which holds two HWR (Half Wave Resonator) cavities was fabricated and tested. Since the operating temperature of the HWR is 2.1 K, the superfluid helium was generated with warm vacuum pumping system. The cyromodule was successfully cooled down below lambda point temperature of helium and any detectable leak was not observed during the test. The static thermal load at 4.2 K was measured. The result and the experience for the cool-down below lambda point of helium are reported in this paper.

Optimum PVD installation depth for two-way drainage deposit

  • Chai, J.C.;Miura, N.;Kirekawa, T.;Hino, T.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.179-191
    • /
    • 2009
  • For a two-way drainage deposit under a surcharge load, it is possible to leave a layer adjacent to the bottom drainage boundary without prefabricated vertical drain (PVD) improvement and achieve approximately the same degree of consolidation as a fully penetrated case. This depth is designated as an optimum PVD installation depth. Further, for a two-way drainage deposit under vacuum pressure, if the PVDs are fully penetrated through the deposit, the vacuum pressure will leak through the bottom drainage boundary. In this case, the PVDs have to be partially penetrated, and there is an optimum installation depth. The equations for calculating these optimum installation depths are presented, and the usefulness of the equations is studied by using finite element analysis as well as laboratory model test results.

Test of The HTS Power Cable Cooling System (초전도케이블 냉각시스템의 냉각특성 시험)

  • 염한길;고득용;김익생;김춘동;김도형
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.281-283
    • /
    • 2003
  • High temperature superconducting power cable requires forced flow cooling. Liquid nitrogen is circulated by a pump and cooled back by cooling system. Typical operating temperature range is expected to be between 65K and 80K. Subcooler heat exchanger uses saturated liquid nitrogen boiling on the shell side to subcool the circulating liquid nitrogen stream that cools the HTS cable. The paper describes performance tests of the cooling system. The test items are heat exchanging performance of subcooler. pressure drop between supply and return lines, heat transfer coefficient inside former, cable cryostat heat leak and simulation of electrical load of HTS cable.

  • PDF

Screw-Propelled Robot for Detecting Grease Pipe (그리스 충전 덕트 내 탐상을 위한 스크류 추진 로봇)

  • Kim, HoJoong;Kim, Dongseon;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.178-182
    • /
    • 2022
  • Post-tension duct in nuclear reactor containment building is filled with grease to prevent steel strand from corroding. If grease leaks by break of duct, steel strand will corrode and cause problem in building safety. Therefore, grease leak should be checked preventatively. But currently used method is inefficient, since it has to remove grease and strand to check. And other methods for checking post-tension dust are not well-researched. In this paper, we develop screw-propelled robot that can move in grease and detect grease duct directly. Also, we make the test environment that is similar to real post-tension duct of containment building and test robot in that environment to verify that our robot is feasible in the post-tension duct. The robot can move forward and backward in grease duct by twin screw mechanism and has mount for sensors to detect grease leakage and strand corrosion.

A Study on the Change of Mass in Flow Velocity Using Loss Resistane Test Method - Using Synthetic rubber system Repair material - (유실저항성 시험방법을 이용한 유속조건에서의 질량변화 추이 연구 합성고무계 보수재료를 중심으로-)

  • Park, So-Young;Jang, Bo;Kim, Soo-Yeon;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.127-128
    • /
    • 2017
  • Tests are conducted according to the ISO TS 16774, Part 3 standard for quality management of leakage repair materials used in cracks in underground concrete structures. These test methods are performed indirectly using a nonwoven fabric on a chalet containing leak repair materials. However, it is considered that it is appropriate to verify the resistance of the repair material, which is required to be applied directly to the cracks in the actual field and to exhibit the resistance of the flow velocity. In this study, mass change was measured by using nonwoven fabric and nonwoven fabric. As a result, both methods showed an increase in mass, which indicated that the maintenance material itself contained a large amount of water, and that the mass change occurred depending on the drying state. Also, depending on the use of nonwoven fabric, the error due to the indirect test could not be ruled out. Therefore, further verification is needed, and it is considered that the test for change of mass reduction measurement is necessary according to the drying time of other types of the same series.

  • PDF

Development of a Piping Integrity Evaluation Simulator Based on the Hardware-in-the-Loop Simulation (하드웨어-인-더-루프 기반의 배관 평가 시뮬레이터의 개발)

  • Kim, Yeong-Jin;Heo, Nam-Su;Cha, Heon-Ju;Choe, Jae-Bung;Pyo, Chang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1031-1038
    • /
    • 2001
  • In order to verify the analytical methods predicting failure behavior of cracked piping, full-scale pipe tests are crucial in nuclear power plant piping. For this reason, series of international test programs have been conducted. However, full-scale pipe tests require expensive testing equipment and long period of testing time. The objective of this paper is to develop a test system which can economically simulate the full-scale pipe test regarding the integrity evaluation. This system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system was developed for the integrity evaluation of nuclear piping based on the methodology of hardware-in-the-loop (HiL) simulation. Using this simulator, the piping integrity can be evaluated based on the elastic-plastic behavior of full-scale pipe, and the high cost full-scale pipe test may be replaced with this economical system.

Development of LPI Vehicle Fuel Filter Housing (LPI 차량용 연료필터하우징 개발)

  • Hong, Byeong-Hoon;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.653-659
    • /
    • 2014
  • Computer simulation has been performed to optimize cold forging process of automotive LPI fuel filter housing. A mold and the test product have been manufactured considering the strain and load distribution during the cold forging process. Also, fuel flow simulation has been performed to analyze flow characteristics of existing model and new model. Simulation result shows that two models have equivalent pressure drop. Compared with the mass of existing product, raw material reduction of 16 g and 30.5 g has been achieved from the upper and lower housing, respectively. Total mass reduction of the new housing was 46.5 g. Leak test and internal pressure test have been performed to verify the safety standard and test results were satisfactory.

Development of Subminiature Type 3 Composite Pressure Vessel for Cooling Unit in Electric Appliances (전자제품 쿨링 유닛용 초소형 타입 복합재 압력용기 개발)

  • Cho, Sung-Min;Lee, Seung-kuk;Moon, Jong-sam;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.151-157
    • /
    • 2018
  • In this study, we have developed a composite pressure vessel that is compact and can store refrigerant at high pressure to increase the refrigerant volume. The composite pressure vessel is made of aluminum-based duralumin, which has high rigidity and excellent elongation in the inner liner, considering the characteristics of products in the aerospace and defense industry, where the safety of the applied product is considered as a priority. High strength carbon fiber was applied to the outside. In order to evaluate the performance of the developed product, burst test and cycling test were carried out. In burst test, an excellent safety margin equivalent to 2.7 times the operating pressure was obtained. In cycling test, a stable failure mode in which 'pre-burst leak' occurs is proved and the soundness of the product is proved.