• Title/Summary/Keyword: leak hole

Search Result 38, Processing Time 0.02 seconds

A Study on the Correlation between Leak Hole Size, Leak Rate, and the Influence Range for Hydrochloric Acid Transport Vehicles (염산 운송차량의 누출공 크기와 누출률 및 영향범위간 상관관계 연구)

  • Jeon, Byeong-Han;Kim, Hyun-Sub
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.175-181
    • /
    • 2021
  • Objectives: The correlation between the size of a leak hole, the volume of the leakage, and the range of influence was investigated for a hydrochloric acid tank-lorry. Methods: For the case of a tank-lorry chemical accident, KORA (Korea Off-site Risk Assessment Supporting Tool) was used to predict the leak rate and the range of influence according to the size of the leak hole. The correlation was studied using R. Results: As a result of analyzing the leak rate change according to the leak hole size in a 35% hydrochloric acid tank-lorry, as the size of the leak hole increased from 1 to 100 mm, the leak rate increased from 0.008 to 83.94 kg/sec, following the power function. As a result of calculating the range of influence under conditions ranging from 1 to 100 mm in size and 10 to 60 minutes of leakage time, it was found that the range spanned from a minimum of 5.4 m to a maximum of 307.9 m. As a result of multiple regression analysis using R, the quadratic function model best explained the correlation between the size of the leak hole, the leak time, and the range of influence with an adjected coefficient of determination of 0.97 and a root mean square error of 22.33. Conclusion: If a correlation database for the size of a leak hole is accumulated for various substances and under various conditions, the amount of leakage and the range of influence can easily be calculated, facilitating field response activities.

An Investigation of Hazard Distance in a Series of Hydrogen Jet Fire with the Hyram Tools (수소 누출 시 제트화재 피해 범위에 대한 분석)

  • KANG, BYOUNG WOO;LEE, TAECK HONG
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.2
    • /
    • pp.166-173
    • /
    • 2017
  • For commercialization of hydrogen refuelling station (HRS), we need to reduce the clearance distance for jet fire in the real entities in the HRS. Thus, we revisited the current regulations of clearance distance for jet fire in the law. The law in korea has been set up by replica of japan, not by our own scientific basis. Recently, sandia lab developed Hydrogen Risk Assessment Model (HyRAM) tools and we simulated a series of circumstances such as 10 to 850 bar with several leak hole sizes. In 850 bar with 10 mm diameter hole leak cases, it shows $4,981kW/m^2$ at 12 m separation from leak source and $1,774kW/m^2$ at 17 m separation from leak source. In 850 bar with 1 mm diameter leak hole, it shows $0.102kW/m^2$ at 12 m separation and $0.044kW/m^2$ at 17 m separation. Current law may be acceptable with 1 mm hole size with 850 bar.

Analysis of Acoustic Emission Signals from Fluid Leakage (유체 누출에서의 음향방출 신호분석)

  • 김용민;윤용구;김호철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.413-421
    • /
    • 1990
  • Acoustic emission signals due to leak from circular holes of 0.4, 1, 2 and 4mm diameter and rectangular slits of different geometry having the same cross section as 4mm diameter hole was studied both analytically and experimentally. Acoustic emission signals from a wide-band type transducer were transformed to digital signals through a digital oscilloscope, and $V_{rms}$ and frequency spectrum were obtained by processing digital signals. Relationships between acoustic parameters and fluid mechanical parameters were derived analytically. A quadrapole aerodynamic model was applied in the analysis of leak from the circular holes and $V_{rms}$ was found to be proportional to the root square of leak rate through the circular hole. A modified model based on dipole source mechanism and laminar equivalent diameter was applied in the analysis of leak signals from the rectangular slits. In the case of constant pressure, $V_{rms}$ increased as the laminar equivalent diameter of slit decreased. In the case of constant laminar equivalent diameter, however the result was similar to that for leak from the circular hole. The frequency spectra of leak signals shows the same frequency characteristics irrespective of the pressure difference.rence.

Analysis of Propagation of Negative Pressure Wave Due to Leak Through Damaged Hole in High Pressure Piping System (고압 배관망에서 배관 손상에 의한 누출 및 관내 저압확장파의 전파 특성 해석)

  • Kim, Wang-Yeun;Ha, Jong-Man;Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • The safe operation of high pressure pipe line systems is of significant importance. Leaks due to faulty operation from the pipelines can lead to considerable product losses and to exposure of community to dangerous gases. There are several leak detection methods of pipeline network which have recently been suggested. The negative pressure wave detection technology, which has advantages of short time detection availability, accurate leaking location estimate capability and cost effective, is concentrated in this study. Theoretical analysis of the flow characteristics for leaking through a hole on the pipe wall has been performed by using Fluent 6.3, commercial CFD package. The results of 3-dimensional analysis near leaking hole confirm the occurrence of negative pressure wave, and the results of 2-dimensional analysis verify the characteristics of propagation of the wave which travels with speed equal to the speed of sound in the pipeline contents. Characteristics of leakage and pressure in a pipe with a hole have been analyzed for the various pipe and hole sizes.

A Study on the Explosion Hazardous Area in the Secondary Leakage of Vapor Phase Materials Based on the Test Results and the Leak Rate According to SEMI S6 in the Semiconductor Industry (반도체 산업의 SEMI S6에 따른 실험결과 및 누출률을 기준으로 한 증기 상 물질의 2차 누출 시 폭발위험장소에 관한 연구)

  • Kim, Sang Ryung;Lim, Keun Young;Yang, Won Baek;Rhim, Jong Guk
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.15-21
    • /
    • 2020
  • Currently, in KS C IEC 60079-10-1, the leakage hole radius of secondary leakage is expressed as a recommendation. Underestimation of leak hole size can lead to underestimation of the calculated values for leak rates, and conservative calculations of leak hole sizes, which are considered for safety reasons, can be overestimated, resulting in an overestimated risk range. This too should be avoided. Therefore, a careful and balanced approach is necessary when estimating the size of leaking holes.Based on this logic, this study examines the stability by grasping the concentration inside the gas box when leaking dangerous substances as a result of experiments based on SEMI S6, an international safety standard applied in the semiconductor industry and The scope of explosion hazardous area was determined by applying the formula of KS C IEC 60079-10-1 according to SEMI F15 leak rate criteria and SEMI S6 leak rate criteria. Based on this, we will examine whether the exhaust performance needs to be improved as an alternative to FAB facilities that are difficult to apply to explosion hazards such as semiconductor industry.

A Study on Validation for Mapping of Gas Detectors at a BTX Plant (BTX 공정에서 Gas Detector Mapping 적정성 검토에 관한 연구)

  • Seo, Ji Hye;Han, Man Hyoeng;Kim, Il Kwon;Chon, Young Woo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.168-178
    • /
    • 2017
  • In order to prevent major and chemical accidents, some of the plants which would like to install and operate hazard chemicals handling facilities must submit Off-site Consequence Analysis due to recent arisen leak accidents since 2015. A lot of chemical industrials choose gas detectors as mitigation equipment to early detect gas vapor. The way of placement of gas detectors has two methods; Code-based Design(CBD) and Performance-based Design. The CBD has principles for gas detectors to be installed with consideration for the place that is expected to accumulate gas, and the leak locations according to legal standards and technical guidelines, and has a possibility to be unable to detect by these rules to locate gas detectors by vapor density information. The PBD has two methods; a Geographic Method and Scenario based Method. The Scenario-based Method has been suggested to make up for the Geographic Coverage Method. This Scenario-based Method draw the best optimum placement of gas detectors by considering leak locations, leak speed information, leak directions and etc. However, the domestic placement guidelines just refers to the CBD. Therefore, this study is to compare existing placement location of gas detectors by the domestic CBD with placement locations, coverages and the number of gas detectors in accordance with the Scenario-based Method. Also this study has measures for early detecting interest of Vapor Cloud and suitable placement of gas detectors to prevent chemical accidents. The Phast software was selected to simulate vapor cloud dispersion to predict the consequence. There are two cases; an accident hole size of leak(8 mm) from API which is the highst accident hole size less than 24.5 mm, and a normal leak hole size from KOSHA Guide (1.8 mm). Detect3D was also selected to locate gas detectors efficiently and compare CBD results and PBD results. Currently, domestic methods of gas detectors do not consider any risk, but just depend on domestic code methods which lead to placement of gas detectors not to make personnels recognize tolerable or intolerable risks. The results of the Scenario-based Method, however, analyze the leak estimated range by simulating leak dispersion, and then it is able to tell tolerable risks. Thus it is considered that individuals will be able to place gas detectors reasonably by making objectives and roles flexibly according to situations in a specific plant.

Experimental Study on Leak-induced Vibration in Water Pipelines Using Fiber Bragg Grating Sensors

  • Kim, Dae-Gil;Lee, Aram;Park, Si-Woong;Yeo, Chanil;Bae, Cheolho;Park, Hyoung-Jun
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.137-142
    • /
    • 2022
  • Leak detection is one of the most important challenges in condition monitoring of water pipelines. Fiber Bragg grating (FBG) sensors offer an attractive technique to detect leak signals. In this paper, leak measurements were conducted on a water distribution pilot plant with a length of 270 m and a diameter of 100 mm. FBG sensors were installed on the pipeline surface and used to detect leak vibration signals. The leak was demonstrated with 1-, 2-, 3-, and 4-mm diameter leak holes in four different pipe types. The frequency response of leak signals was analyzed by fast Fourier transform analysis in real time. In the experiment, the frequency range of leak signals was approximately 340-440 Hz. The frequency shifts of leak signals according to the pipe type and the size of the leak hole were demonstrated at a pressure of 1.8 bar and a flow rate of 25.51 m3/h. Results show that frequency shifts detected by FBG sensors can be used to detect leaks in pipelines.

Experimental Study on Leak Flow Rate and Inner Flow Characteristics of Plate Heat Exchangers with Pin-hole Location and Mass Flux (판형열교환기 핀 홀의 위치 및 유속에 따른 누수율 및 내부 유동 특성에 관한 실험적 연구)

  • Song, Kang Sub;Baek, Chanhyun;Kim, Sung Woo;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.5
    • /
    • pp.171-177
    • /
    • 2016
  • Plate heat exchangers have been widely used in various fields because of their high heat transfer coefficients, small area of installation, and ease of maintenance compared to other heat exchangers. However, when plate heat exchanger is used for a long time, leak can occur due to inner crack. Therefore, it is important to understand the inner flow characteristics in plate heat exchangers. In this study, the inner flow characteristics and flow rate of plate heat exchanger were evaluated using various flow directions, pin-hole sizes, and Reynolds numbers. In downflow, initially most water flowed to the opposite of the inlet due to distribution region. Then it gradually had a uniform distribution due to chevron configuration. In upflow, it had a uniform flow consistently due to the dominant gravity effect. As the Reynolds number increased, the leak rate was decreased due to the inertia effect regardless of the flow direction.

Mechanical Reliability Issues of Copper Via Hole in MEMS Packaging (MEMS 패키징에서 구리 Via 홀의 기계적 신뢰성에 관한 연구)

  • Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.29-36
    • /
    • 2008
  • In this paper, mechanical reliability issues of copper through-wafer interconnections are investigated numerically and experimentally. A hermetic wafer level packaging for MEMS devices is developed. Au-Sn eutectic bonding technology is used to achieve hermetic sealing, and the vertical through-hole via filled with electroplated copper for the electrical connection is also used. The MEMS package has the size of $1mm{\times}1mm{\times}700{\mu}m$. The robustness of the package is confirmed by several reliability tests. Several factors which could induce via hole cracking failure are investigated such as thermal expansion mismatch, via etch profile, and copper diffusion phenomenon. Alternative electroplating process is suggested for preventing Cu diffusion and increasing the adhesion performance of the electroplating process. After implementing several improvements, reliability tests were performed, and via hole cracking as well as significant changes in the shear strength were not observed. Helium leak testing indicated that the leak rate of the package meets the requirements of MIL-STD-883F specification.

  • PDF

Leak and Leak Point Prediction by Detecting Negative Pressure Wave in High Pressure Piping System (저압확장파 검출을 통한 배관 누출 및 누출위치 예측)

  • Ha, Tae-Woong;Ha, Jong-Man;Kim, Dong-Hyuk;Kim, Young-Nam
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.47-53
    • /
    • 2007
  • The safe operation of high pressure pipe line systems is of significant importance. Leaks due to faulty operation from the pipelines can lead to considerable product losses and to exposure of community to dangerous gases. There are several leak detection methods, which have been recently suggested on pipeline network. The negative pressure wave detection technology, which has advantages of short time detection availability, accurate leaking location estimate capability and cost effective, is concentrated in this study. Theoretical analysis of the flow characteristics for leaking through a hole on the pipe wall has been performed by using CFD++, commercial CFD package. The results of 3-dimensional analysis near leaking hole confirm the occurrence of negative pressure wave and verify the characteristics of propagation of the wave which travels with speed equal to the speed of sound in the pipeline contents. For the application of long pipe line system. The method of 1-dimensional analysis has been suggested and verified with results of CFD++.

  • PDF