• 제목/요약/키워드: leaf biomass

검색결과 338건 처리시간 0.028초

Estimation Model and Vertical Distribution of Leaf Biomass in Pinus sylvestris var. mongolica Plantations

  • Liu, Zhaogang;Jin, Guangze;Kim, Ji Hong
    • 한국산림과학회지
    • /
    • 제98권5호
    • /
    • pp.576-583
    • /
    • 2009
  • Based on the stem analysis and biomass measurement of 36 trees and 1,576 branches in Pinus sylvestris var. mongolica (Mongolian pine) plantations of Northeast China, this study was conducted to develop estimation model equation for leaf biomass of a single tree and branch, to examine the vertical distribution of leaf biomass in the crown, and to evaluate the proportional ratios of biomass by tree parts, stem, branch, and leaf. The results indicated that DBH and crown length were quite appropriate to estimate leaf biomass. The biomass of single branch was highly correlated with branch collar diameter and relative height of branch in the crown, but not much with stand density, site quality, and tree height. Weibull distribution function would have been appropriate to express vertical distribution of leaf biomass. The shape parameters from 29 sample trees out of 36 were less than 3.6, indicating that vertical distribution of leaf biomass in the crown was displayed by bell-shaped curve, a little inclined toward positive side. Apparent correlationship was obtained between leaf biomass and branch biomass having resulted in linear function equation. The stem biomass occupied around 80% and branch and leaf made up about 20% of total biomass in a single tree. As the level of tree class was increased from class I to class V, the proportion of the stem biomass to total biomass was gradually increased, but that of branch and leaf became decreased.

양평지역 리기다소나무, 낙엽송, 졸참나무의 allometry와 임관동태 연구 (Allometry and Canopy Dynamics of Pinus rigida, Larix leptolepis, and Quercus serrata Stands in Yangpyeong Area)

  • 김종성;손요환;김진수
    • 한국산림과학회지
    • /
    • 제84권2호
    • /
    • pp.186-197
    • /
    • 1995
  • 경기도 양평 지역에 생육하고 있는 리기다소나무, 낙엽송, 졸참나무 임분의 지상 부위 생체량과 엽면적을 추정하기 위해 흉고직경, 흉고단면적, 변재단면적, 변재부피 등의 변수를 이용하는 회귀식을 조제하였다. 지상 부위 생체량과 엽면적은 흉고직경, 흉고단면적, 변재단면적, 변재부피 등과 각각 통계적으로 유의한 상관 관계를 보였으며, 비슷한 직경급에서 3수종 모두 유사한 수간목부 생체량을 보였다. 그러나 수피, 잎, 가지와 지상 부위 총생체량과, 단위건중량당 엽면적 그리고 엽면적 변재단면적의 비에 있어 수종 간 차이가 뚜렷하였다. 생체량과 엽면적 추정을 위한 회귀식은 대상 수중의 잎의 습성과 수병에 영향을 받는 것으로 보이며, 이들 영향을 보다 확실하게 구명하치 위해서 상세한 연구가 필요한 것으로 사료된다.

  • PDF

시비량, 재식밀도, 수확시기가 담배 잎단백질 생산에 미치는 영향 (Effect of the Amount of Fertilizer, Plant Density, and Halvesting Time on the Production of Tobacco leaf Protein)

  • 우억구;이학수
    • 한국연초학회지
    • /
    • 제15권1호
    • /
    • pp.75-89
    • /
    • 1993
  • Effect of the amount of fertilizer, plant density, and harvesting time on the production of tobacco leaf protein and fresh biomass was investigated. Flue-cured tobacco(M tabacum, L., cv. NC 82) seedlings were transplanted in the field dressed 200kg N per ha at 1$\times$105, 3$\times$105, 5$\times$105, 7$\times$105 plants per ha, and were harvested at the time when 6 and 10 weeks after transplanting, respectively. Harvest at 10 weeks after transplanting increased greatly number of leaves per plant and fresh weight of a plant, Precentage of senescent leaf weight, but significantly decreased fresh weight of a leaf and total protein contents g-1 fresh weight of leaf and stalk over the amount obtained from the harvest at 6 weeks after transplanting. Also, fresh leaf numbers of a plant, fresh weight of a leaf and of a plant, and total protein contents g-1 fresh weight of biomass were more decreased, but percentage of senescent leaf weight were remarkably increased under higher plant density. Therefore, it was seemed that harvesting at 6 weeks after transplanting under 1$\times$105 plant density per ha is more effective for producing higher yield of biomass and protein per plant than 10 weeks harvesting with 7$\times$105 population per ha. A trend was observed that biomass and protein yields per ha are positively correlated with plant population. Biomass yield per ha was the greatest at 7$\times$105 density(80.5t), but the peak of protein yield was at the near of 5$\times$105 population(2454kg as total protein) per ha on the regression curve. It was assumed that if tobacco plants are transplanted under 5$\times$105 plant density at the mid of May, and thereafter harvest at 6 weeks repeatedly during the growing season, it is possible to harvest 2~3 times per year, and to yield more 6.024kg of protein and over 140me1ric tons of fresh biomass ha 1 year 1 statistically in the korea tobacco growing regions.

  • PDF

생식기관이 달피나무의 Biomass 분배에 미치는 영향 (Effects of Reproductive Organs on Biomass Distribution of Tilia amurensis R$_{UPR}$.)

  • 이덕수;홍성각
    • 임산에너지
    • /
    • 제18권1호
    • /
    • pp.11-16
    • /
    • 1999
  • Dry weights of leaves, stem and floral organs of 15-year-old Tilia amurensis RUPR., were measured twice on 1 June and 20 August 1995 to examine the difference in biomass production between the reproductive and vegetative twigs which are morphologically neighboring and alternative. The following results were obtained : (1) The biomass of the reproductive twigs was greater than that of the vegetative twigs in both June and August. (2) The ratio of stem to total biomass in the reproductive and the vegetative twigs was greater in August than that in June, while the ratio of leaf biomass was greater in June than that in August. The ratio of floral organ to the total biomass in the reproductive twigs was 14.6% and 27.1% in June and August, respectively. (3) The total twig biomass per leaf biomass was greater in the reproductive twigs than that in the vegetative twigs in both June and August. (4) Net assimilation rate in the floral organs showed 21% of that in the leaves in June and 37% in August.

  • PDF

Allometry, Biomass and Productivity of Quercus Forests in Korea: A Literature-based Review

  • Li, Xiaodong;Yi, Myong-Jong;Son, Yo-Whan;Jin, Guangze;Lee, Kyeong-Hak;Son, Yeong-Mo;Kim, Rae-Hyun
    • 한국산림과학회지
    • /
    • 제99권5호
    • /
    • pp.726-735
    • /
    • 2010
  • Publications with the data on allometric equation, biomass and productivity of major oak forests in Korea were reviewed. Different allometric equations of major oak species showed site- or speciesspecific dependences. The biomass of major oak forests varied with age, dominant species, and location. Aboveground tree biomass over the different oak species was expressed as a power equation of the stand age. The proportion of tree component (stem, branch and leaf) to total aboveground biomass differed among oak species, however, biomass ranked stem > branch > leaf in general. The leaf biomass allocation over the different oak species was expressed as a power equation of total aboveground biomass while there were no significant patterns of biomass allocation from stem and branch to the aboveground biomass. Tree root biomass continuously increased with the aboveground biomass for the major oak forests. The relationship between the root to shoot ratio and the aboveground tree biomass was expressed by a logarithmic equation for major oak forests in Korea. Thirteen sets of data were used for estimating the net primary production (NPP) and net ecosystem production (NEP) of oak forests. The mean NPP and NEP across different oak forests was 10.2 and 1.9 Mg C $ha^{-1}year^{-1}$. The results in biomass allocation, NPP and NEP generally make Korean oak forests an important carbon sinks.

앉은부채 (Symplocarpus renifolius) 개체군의 동태 1.개체군의 구조와 영양생장 (Population Dynamics of Symplocarpus renifolius 1. Population Structure and Vegetative Growth)

  • Min, Byeong-Mee;Kang, Hyun-Jung
    • The Korean Journal of Ecology
    • /
    • 제17권4호
    • /
    • pp.453-461
    • /
    • 1994
  • Size class structure and vegetative growth of a perennial herb of the temperate deciduous forests, Symplocarpus renifolius Schott, were studied from 1991 to 1994 in Namhansansung, Kyonggi Province, Korea. The size class structures of leaf number and leaf area per individual followed bell-shape curve, i.e. frequency of middle class was relatively high. The leaf area increased from the late-March to mid-May. At the end of the growing season, leaf area(length X breadth) was proportional to biomass, especially aboveground biomass. The leaf number and leaf area per individual increased at the rate of 0.08 leaf/year and 9.7 $cm^2/year$, respectively. The size of the individuals in large-sized classes, in leaf number and leaf area, decreased in next year, while the size of the individuals in small-sized classes increased. Therefore, it was concluded that the size class structure of S. renifolius population was largely determined by the growth form.

  • PDF

염 및 건조스트레스 하에서 포복형 백리향의 생육과 Abscisic Acid 농도변화 (Growth and Abscisic Acid Changes of Creeping Thyme in the Exposure of NaCl and Drought)

  • 김민제;엄석현
    • 한국약용작물학회지
    • /
    • 제17권5호
    • /
    • pp.328-334
    • /
    • 2009
  • Experimental purpose was to evaluate growth characteristic and abscisic acid (ABA) responses against salt/drought stresses. In the shoot biomass, creeping thyme was tolerated in mild NaCl stress, ranging 0 to 100 mM, while it was severely reduced in higher salinity. Under constant drought stress, the shoot biomass of creeping thyme showed a worse value compared to that of 100 mM NaCl treatment. Chlorophyll degradation was more severe in immature leaf than mature leaf under salt and drought stresses. In salt stress, immature leaf produced much amounts of ABA compared to mature leaf and also immature leaf showed faster increase of ABA than that of mature leaf. In drought stress, immature leaf responded to stress within 24 hours by the increase of ABA, while mature leaf responded to at 72 hours. Our results recommended that the optimal salinity level of creeping thyme was 50~100 mM NaCl.

진해지역 30년생 편백 인공림의 지상부 현존량 (Aboveground Biomass of 30 Years Old Chamaecyparis obtusa Plantation in Jinhae)

  • 이광수;정영교
    • 임산에너지
    • /
    • 제22권1호
    • /
    • pp.49-57
    • /
    • 2003
  • 경상남도 진해지역 30년생 편백 조림지를 대상으로 현존량을 추정하기 위하여 Urich II법에 의하여 수관급에 따른 부위별 현존량을 측정하여 생산구조를 해석하고 시료채취의 효율성을 높이기 위한 방법을 탐색하였다. 지상부 총 물질생산량은 137.3 ton/ha을 보유하고 있었으며, 이들 임목의 부위별 구성비는 줄기 71.8%, 가지 15.4%, 잎 12.8%로 나타났다. 임분에서 엽생산량은 수고 9.2∼11.2m에서 최대치를 보였으며, 현존량의 구성비는 우세목과 준우세목에서는 줄기>가지>잎, 열세목에서는 줄기>잎>가지 순으로 나타났다. 부위별 건조비는 줄기 47.3∼49.2%, 가지 48.8∼52.9%, 잎 39.2∼40.8%, 고사지 0.78%∼0.89%의 범위를 보였다. 표준목 전건비중(basic wood density)은 0.49∼0.53으로 나타났으나 수관급에 따른 표준목간 유의차는 나타나지 않았다.

  • PDF

Enzymatic Saccharification of Salix viminalis cv. Q683 Biomass for Bioethanol Production

  • Kim, Hak-Gon;Song, Hyun-Jin;Jeong, Mi-Jin;Sim, Seon-Jeong;Park, Dong-Jin;Yang, Jae-Kyung;Yoo, Seok-Bong;Yeo, Jin-Ki;Karigar, Chandrakant S.;Choi, Myung-Suk
    • Journal of Forest and Environmental Science
    • /
    • 제27권3호
    • /
    • pp.143-149
    • /
    • 2011
  • The possibility of employing biomass of Salix viminalis cv. Q683 as a resource of bio-energy was evaluated. The chemical analysis of S. viminalis cv. Q683 leaf biomass showed components such as, extractives (2.57%), lignin (39.06%), hemicellulose (21.61%), and cellulose (37.83%), whereas, its stem was composed of extractives (1.67%), lignin (23.54%), hemicellulose (33.64%), and cellulose (42.03%). The biomass of S. viminalis cv. Q683 was saccharified using two enzymes celluclast and viscozyme. The saccharification of S. viminalis cv. Q683 biomass was influenced by enzymes and their strengths. The optimal enzyme combination was found to be celluclast (59 FPU/g substrate) and viscozyme (24 FBG/g substrate). On saccharification the glucose from leaf and stem biomass was 7.5g/L and 11.7g/L, respectively after 72 hr of enzyme treatment. The biomass and enzyme-treated biomass served as the feedstock for ethanol production by fermentation. The ethanol production from stem and leaf biomass was 5.8 g/L and 2.2 g/L respectively, while the fermentation of the enzymatic hydrolysates yielded 5 g/L to 8 g/L bioethanol in 72 hours.

The effect of simulated acid rain on microbial community structure in decomposing leaf litter

  • Cha, Sangsub;Lim, Sung-Min;Amirasheba, Bahitkul;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • 제36권4호
    • /
    • pp.223-233
    • /
    • 2013
  • Acid deposition is one of the most serious environmental problems in ecosystems. The present study surveyed the effects of simulated acid rain on leaf litter mass loss and microbial community in the decomposing leaf litter of Sorbus anifolia in a microcosm at $23^{\circ}C$ and 40% humidity. Microbial biomass was measured by substrate-induced respiration (SIR) and phospholipid fatty acids (PLFAs), and the microbial community structures were determined by composition of PLFAs at each interval of decomposition in litter sample and at each pH treatment. The microbial biomass showed peaks at mid-stage of decomposition, decreasing at the late stage. The leaf litter mass loss of S. anifolia decreased with decreasing pH during early and mid-decomposition stages; however the mass loss becomes similar between pH treatments at late-decomposition stage. The acidification remarkably lowers the microbial biomass of bacteria and fungi; however, microbial diversity was unchanged between pH treatments at each stage of litter decomposition. With changes of decomposition stage and pH treatment there were considerable differences in replacement and compensation of microbial species. Fungi/bacteria ratio was considerably changed by pH treatment. The PLFA profile showed significantly larger fungi/bacteria ratio at pH 5 than pH 3 at the early stage of decomposition, and the difference becomes smaller at the later decomposition stage. At low pH, pH 3 and pH 4, the fungi/bacteria ratios were stable according to the litter decomposition stages. Simulated acid rain caused decreases of 10Me17:0, 16:1${\omega}$7c, 18:1${\omega}$7, 15:0, but increase of 24:0. In addition, litter mass loss showed significant positive correlation with microbial biomass measured by SIR and PLFA on the decomposing leaf litter.