• Title/Summary/Keyword: lead-rubber bearing

Search Result 134, Processing Time 0.024 seconds

The Seismic Behavior of the Truss-Arch Structure by Lead Rubber Bearing and Friction Pendulum System with Seismic Isolation (납고무받침 면진장치와 마찰진자 면진장치에 의한 트러스-아치 구조물의 지진거동 비교)

  • Kim, Gee-Cheol;Seok, Keun-Yung;Kang, Joo-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.374-379
    • /
    • 2008
  • The purpose of seismic isolation system among them is to lengthen the period of structure and make its period shift from the dominant period of earthquake. In this study, the seismic behavior of arch structure with lead rubber bearing(LRB) and friction pendulum system(FPS) is analyzed. The arch structure is the simplest structure and has the basic dynamic characteristics among large spatial structures. Also, Large spatial structures have large vertical response by horizontal seismic vibration, unlike seismic behavior of normal rahmen structures. When horizontal seismic load is applied to the large spatial structure with isolation systems, the horizontal acceleration response of the large spatial structure is reduced and the vertical seismic response is remarkably reduced.

  • PDF

Experimental Study on Dependent Characteristics of Lead Rubber Bearing for Buildings (건물용 납면진받침의 의존성 평가 실험)

  • 정길영;박건록;하동호;김두훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.373-382
    • /
    • 2002
  • In this paper, the characteristic dependencies of LRB(lead rubber bearing) were studied by various prototype tests on LRB for buildings. The characteristics of LRB were dependent on displacements, repeated cycles, frequencies, vertical pressures and temperatures. The prototype test showed that the displacement was the most governing factor influencing on characteristics of LRB. The effective stiffness and equivalent damping of LRB were decreased with large displacement, and increased with high frequency. After the repeated cyclic test with 50 cycles, the effective stiffness and equivalent damping of LRB were reduced by approximately 20% compared with those of the 1$^{st}$ cycle. The effective stiffness was decreased with high vertical pressure, while the equivalent damping was increased. In which, the equivalent damping was more dependent on the vertical pressure than the effective stiffness.s.

  • PDF

Experimental Study on Floor Isolation of Main Control Room of Nuclear Power Plant using LRB (Lead Rubber Bearing) (납-고무 베어링(LRB) 면진시스템을 적용한 원전주제어실의 진동대 실험)

  • Lee, Kyung-Jin;Ham, Kyung-Won;Suh, Yong-Pyo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.429-436
    • /
    • 2005
  • In this study, we made two types of main control room floor systems (Type I, Type II) and several shaking table tests with and without isolation system were conducted to evaluate floor isolation effectiveness of LRB(Lead Rubber Bearing). Both type showed large difference according to input earthquake signals, but showed little difference according to floor type. It is required to make LRB of which design frequency is below 1Hz when applied to main control room of NPP, but considering much difficulties in making such LRB, it is recommended that consideration should be taken into account when applied to main control room of NPP.

  • PDF

Stability evaluation of CWR on the bridge with lead Rubber Bearing(LRB) (LRB 교좌장치를 사용한 교량의 장대레일 축력안정성 평가)

  • Yang Sin-Chu;Yun Cheol-Kyun;Lee Jin-Woo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.787-792
    • /
    • 2004
  • LRB(Lead rubber bearing) has small resistance force against slowly acting loadings such as temporal and creep loadings vice versa large resistance force against rapid loadings such as earthquake and braking loadings. By those mechanical characteristics, it has the advantage to reduce longitudinal load acting on abutments and piers, and moreover to in1prove the running stability of train by restricting the behavior of bridge under the required level. In this study, a stability evaluation method of CWR on the bridge with LRB is presented. Several parametric studies are carried to investigate how LRB contributes to the improvement of CWR stability.

  • PDF

Bridges dynamic analysis under earthquakes using a smart algorithm

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.329-338
    • /
    • 2022
  • This work addresses the optimization controller design problem combining the AI evolution bat (EB) optimization algorithm with a fuzzy controller in the practical application of a reinforced concrete frame structure. This article explores the use of an intelligent EB strategy to reduce the dynamic response of Lead Rubber Bearing (LRB) composite reinforced concrete frame structures. Recently developed control units for plant structures, such as hybrid systems and semi-active systems, have inherently non-linear properties. Therefore, it is necessary to develop non-linear control methods. Based on the relaxation method, the nonlinear structural system can be stabilized by properly adjusting the parameters. Therefore, the behavior of a closed-loop system can be accurately predicted by determining the behavior of a closed-loop system. The performance and durability of the proposed control method are demonstrated by numerical simulations. The simulation results show that the proposed method is a viable and feasible control strategy for seismically tuned composite reinforced concrete frame structures.

Pseudo Dynamic Test of the Seismically Isolated RC Piers (지진격리설계된 RC교각의 유사동적 실험)

  • Kim Young-Jin;Kwahk Im-Jong;Cho Chang-Beck;Kwark Jong-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.25-28
    • /
    • 2004
  • Many highway bridges in Korea need seismic retrofit because only one decade has passed since the seismic design criteria was introduced. In this experimental study, the effectiveness of base isolation bearings was discussed for the seismic retrofit of the highway bridges. Four real scale RC pier specimens were constructed for the test. These RC piers didn't have seismic details. Except for one RC pier for the pilot test, three types of bearings such as Pot bearing, Rubber bearing (RB), Lead-rubber bearing (LRB) were applied to the other RC piers respectively. The RC pier with Pot bearing means current state of the prototype bridge that is not retrofitted seismically. And two RC piers with RB or LRB mean assumed states of the prototype bridge that are retrofitted seismically. To simulate dynamic behavior of these RC piers under earthquake loads, Pseudo-dynamic test method was used.

  • PDF

Seismic base isolation for highway steel bridges using shape memory alloys (형상기억합금을 이용한 고속도로 강교량의 면진)

  • Choi, Eun Soo;Jeon, Jun Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.145-153
    • /
    • 2004
  • Conventional lead-rubber bearings may be unstable in case of strong ground motions. To address this problem, this paper proposed a new concept of isolation device wherein shape memory alloy wires were incorporated in an elastomeric bearing. A three-span continuous steel bridge was used for seismic analyses to compare the performance of lead-rubber and proposed bearings. The proposed bearings showed almost the same performance as the lead-rubber bearings. In particular, the proposed bearings limited relative displacement effectively with strong ground motions and recovered its original undeformed shape.