• Title/Summary/Keyword: lead-free piezoelectric ceramics

Search Result 168, Processing Time 0.029 seconds

Piezoelectric and Dielectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics as a Function of Fe2O3 Addition (Fe2O3첨가에 따른 (Na,K,Li)(Nb,Sb,Ta)O3계 세라믹스의 압전 및 유전 특성)

  • Lee, Gwang-Min;Shin, Sang-Hoon;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.555-560
    • /
    • 2014
  • In this paper, in order to develop outstanding Pb-free composition ceramics, the $Fe_2O_3$-doped ($Na_{0.525}K_{0.443}Li_{0.037}$)($Nb_{0.883}Sb_{0.08}Ta_{0.037}$)$O_3$ + 0.3 wt% $Bi_2O_3$ + x wt% $Fe_2O_3$ (x= 0~1.0 wt%)(abbreviated as NKL-NST) lead-free piezoelectric ceramics have been synthesized using the ordinary solid state reaction method. The effect of $Fe_2O_3$-doping on their microstructure and electrical properties were investigated. XRD diffraction pattern studies confirm that $Fe_2O_3$ completely diffused into the NKL-NST lattice to form a new stable soild solution with $Fe^{3+}$ entering the $Nb^{5+}$, $Sb^{5+}$ and $Ta^{5+}$ of B-site. And, phase structure of all the ceramics exhibited pure perovskite phase and no secondary phase was found in the ceramics. The ceramics doped with 0.6 wt% $Fe_2O_3$ have the optimum values of piezoelectric constant($d_{33}$), planar piezoelectric coupling coefficient($k_p$) and mechanical quality factor($Q_m$) : $d_{33}$ = 233 [pC/N], $k_p$= 0.44, $Q_m$= 95. These results indicate that the ($Na_{0.525}K_{0.443}Li_{0.037}$)($Nb_{0.883}Sb_{0.08}Ta_{0.037}$)$O_3$ +0.3 wt% $Bi_2O_3$ + 0.6 wt% $Fe_2O_3$ ceramic is a promising candidate for lead-free piezoelectric ceramics.

Piezoelectric and Electrical properties of KNN ceramics as a function of the Variation of Nb (Nb 변화에 따른 KNN 세라믹스의 압전 및 전기적 특성)

  • Lee, Kba-Soo;Yoo, Ju-Hyun;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.302-302
    • /
    • 2010
  • The lead-free piezoelectric ceramics must have high piezoelectric properties and electrical properties for the applications of piezoelectric devices. Therefore, KNN ceramics were investigated as a function of the variation of Nb. The density was increased with the increase of Nb. The density was saturated above 0.8895 mol Nb. The maximum value of electromechanical coupling coefficient(kp) was obtained 0.428 at 0.8895mol Nb. This result can be attributed to the well sintered of specimens. Also, The maximum value of mechanical quality factor(Qm) showed 1554 at 0.8895mol Nb. Therefore, this composition can be used for application of piezoelectric device such as piezoelectric transformer and piezoelectric actuator.

  • PDF

Piezoelectric and Dielectric Characteristics of Lead-free (Na,K)NbO3 Piezoelectric Ceramic System according to Calcination Temperature (하소온도변화에 따른 (Na,K)NbO3계 무연 압전세라믹스의 압전 및 유전특성)

  • Ryu, Sung-Lim;Chung, Kwang-Hyun;Yoo, Ju-Hyun;Lee, Byung-Youl;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.821-826
    • /
    • 2005
  • In this paper, in order to develop lead-free piezoelectric ceramics, $(Li_{0.04}Na_{0.44}K_{0.52)(Nb_{0.86}Ta_{0.10}Sb_{0.04})O_3$ ceramics were fabricated with the variation of calcination temperature and sintering temperature. The ceramics couldn't be sintered at temperature less than $1110^{\circ}C$ and showed the highest density at calcination temperature of $800^{\circ}C$. Crystal structure of the ceramics showed pseudo-tetragonal phase. At the calcination temperature of $800^{\circ}C$ and sintering temperature of $1110^{\circ}C$, the optimal values of $density=4.64g/cm^3,\;kp=0.45,\;{\varepsilon}r=1336,\;d_{33}=254pC/N\;and\;Tc=335^{\circ}C$ were obtained.

Electrical Properties of (Ba,Ca)(Ti,Zr)O3 Ceramics for Bimorph-type Piezoelectric Actuator

  • Shin, Sang-Hoon;Yoo, Ju-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.226-229
    • /
    • 2014
  • In this study, lead-free $(Ba_{0.85}Ca_{0.15})(Ti_{1-x}Zr_x)O_3$ ceramics and a bimorph-type piezoelectric actuator were fabricated using the normal oxide-mixed sintering method, and their dielectric properties, microstructure, and displacement properties were investigated. From the results of X-ray diffraction, the pattern of the specimen has a pure perovskite structure. In addition, no secondary impurity phases were found. The excellent piezoelectric coefficient of $d_{33}=454pC/N$, the electromechanical coupling factor $k_p=0.51$, the dielectric constant ${\varepsilon}_r=3,657$, the mechanical quality factor $Q_m=239$, and $T_c$(Tetragonal-Cubic) =$90^{\circ}C$ were shown at x= 0.085. ${\Delta}k_p/k_p20^{\circ}C$ and ${\Delta}f_r/f_r20^{\circ}C$ showed the maximum value of -0.255 and 0.111 at $-20^{\circ}C$ and $80^{\circ}C$, respectively. The maximum total-displacement was $60{\mu}m$ under the input voltage of 50 V. As a result, it is considered that lead-free $(Ba_{0.85}Ca_{0.15})(Ti_{1-x}Zr_x)O_3$ ceramics is a promising candidate for piezoelectric actuator application for x= 0.085.

Piezoelectric properties of (1-x)(Na,K)$NbO_3$-xBa(Zr,Ti)$O_3$ ceramics with composition (조성비에 따른 (1-x)(Na,K)$NbO_3$-xBa(Zr,Ti)$O_3$ 세라믹스의 압전 특성)

  • Lee, Young-Hie;Lee, Dong-Hyun;Bae, Seon-Gi;Lee, Sang-Chul;Choi, Dal-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1436-1437
    • /
    • 2011
  • (1-x)(Na,K)$NbO_3$-xBa(Zr,Ti)$O_3$ lead free piezoelectric ceramics were synthesized to enhance the piezoelectric properties of (Na,K)$NbO_3$. The synthesis and sintering method were the conventional solid state reaction method and general sintering method in air atmosphere. We report the improved piezoelectric properties in the perovskite structure composed of the NKN and BZT ceramics. We investigated the effects of NKN, BZT on the structural and electrical properties of the NKN-BZT ceramics. The NKN-BZT ceramics show good performance with piezoelectric constant $d_{33}$=155pC/N. The results reveal that (1-x)(Na,K)$NbO_3$-xBa(Zr,Ti)$O_3$ ceramics are promising candidate materials for lead-free piezoelectric application.

  • PDF

Microstructure and Piezoelectric Properties in the (Na,K,Li)(Nb,Sb)$O_3$ system ((Na,K,Li)(Nb,Sb)$O_3$ 세라믹스의 압전특성과 미세조직의 변화)

  • Jeon, So-Hyun;Kim, Min-Soo;Jeong, Soon-Jong;Kim, In-Sung;Min, Bok-Ki;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.280-280
    • /
    • 2007
  • Lead oxide-based ferroelectrics are the most widely used materials for piezoelectric actuators, sensors and transducers due to their excellent piezoelectric properties. Considering lead toxicity, there is great interest in developing lead-free piezoelectric materials, which are biocompatible and environmentally friendlier. Recently alkali oxide materials, including sodium - potassium niobate (NKN), have been given attention in view of their ultrasonic application and also as promising candidates for piezoelectric lead-free system. However, it is difficult to sinter such NKN-based materials via conventional sintering process. In this reason, many researchers have investigated hot press, hot isostatic press or spark-plasma sintering of NKN-based ceramics. In this study, as candidates for lead-free piezoelectric materials, dense (Na,K,Li)(Nb,Sb)$O_3$ systems were developed by conventional sintering process. The microstructures and piezoelectric properties of the (Na,K,Li)(Nb,Sb)$O_3$ systems were investigated as a function of variable compositions. The excellent piezoelectric and electromechanical properties indicate that this system is potentially good candidate as lead-free material for a wide range of electro-mechanical transducer applications.

  • PDF

Piezoelectric and Dielectric Characteristics of Lead Free [Li0.04(NayK1-y)0.96](Nb0.86Ta0.1Sb0.04)O3 Ceramics with the Variations of Na/K Ratio (Na/K 비 변화에 따른 무연 [Li0.04(NayK1-y)0.96](Nb0.86Ta0.1Sb0.04)O3 세라믹스의 압전 및 유전특성)

  • Lee, Kab-Soo;Yoo, Ju-Hyun;Hong, Jae-Il;Lee, Seok-Tae;Kim, Yong-Woon;Jeong, Hoy-Seung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • In this paper, lead-free [$Li_{0.04}(Na_{y}K_{1-y})_{0.96}](Nb_{0.86}Ta_{0.1}Sb_{0.04})O_{3}$ (y=0.4 - 0.58) ceramics were manufactured using conventional miked oxide method for acoustic emission(AE) sensor application and their dielectric and piezoelectric properties were investigated with the variations of Na/K ratio. The samples in the composition Na/K=54/46 exhibited excellent electrical properties of $d_{33}=300$ PC/N and kp=0.49. Taking into consideration above piezoelectric properties, it can be concluded that the [$Li_{0.04}(Na_{y}K_{1-y})_{0.96}](Nb_{0.86}Ta_{0.1}Sb_{0.04})O_{3}$ system ceramics are the promising lead-free materials capable of substituting PZT system ceramics.

Dielectric and Piezoelectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics as a Function of CuO Addition (CuO 첨가에 따른 (Na,K,Li)(Nb,Sb,Ta)O3 세라믹스의 유전 및 압전 특성)

  • Lee, KabSoo;Kim, YouSeok;Yoo, JuHyun;Mah, Sukbum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.630-634
    • /
    • 2014
  • $(Na_{0.525}K_{0.4425}Li_{0.0375})(Nb_{0.9975}Sb_{0.065}Ta_{0.0375})O_3+0.3 wt%CoO$ ceramics were fabricated as a function of CuO addition by traditional solid state sintering process in order to develop excellent lead-free piezoelectric ceramics composition. The addition of CuO in the LNKNTS composition ceramics can effectively enhance the densification of the ceramics, resulting in the oxygen vacancies as hardening effect. The excellent piezoelectric properties of electromechanical coupling factor($k{\small}_P$) of 0.378, piezoelectric constant($d_{33}$) of 152 pC/N were obtained from the 1.0 mol% CuO doped LNKNTS ceramics sintered at $1,020^{\circ}C$ for 3 h.

Piezoelectric Properties of (Na,K)NbO3 Ceramics as a Function of K5.4Cu1.3Ta10O29 Addition (K5.4Cu1.3Ta10O29 첨가에 따른 (Na,K)NbO3계 세라믹스의 압전특성)

  • Noh, Jung-Rae;Yoo, Ju-Hyun;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.379-382
    • /
    • 2010
  • In this study, in order to develop the lead-free piezoelectric ceramics with high piezoelectric and dielectric properties, $(K_{0.5}Na_{0.5})(Nb_{0.97}Sb_{0.03})O_3$ ceramics were fabricated using a conventional mixed oxide process and their piezoelectric and dielectric characteristics were investigated according to the $K_{5.4}Cu_{1.3}Ta_{10}O_{29}$ addition. $K_{5.4}Cu_{1.3}Ta_{10}O_{29}$ addition enhanced density, electromechanical coupling factor($k_p$) piezoelectric constant $d_{33}$ and mechanical quality factor($Q_m$). At the 0.9 mol% $K_{5.4}Cu_{1.3}Ta_{10}O_{29}$ addition, density, electromechanical coupling factor($k_p$), dielectric constant(${\varepsilon}_r$) and piezoelectric constant($d_{33}$) of specimen showed the optimum values of 0.46, 471, and 148 pC/N, respectively.

Piezoelectric and Dielectric Properties of NKN-(1-x)BNT-xBT Ceramics (NKN-(1-x)BNT-xBT 세라믹스의 압전 및 유전특성)

  • Lee, Seung-Hwan;Nam, Sung-Pill;Lee, Sung-Gap;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.771-775
    • /
    • 2010
  • In this study, piezoelectric and dielectric properties of the $(Na_{0.5}K_{0.5})NbO_3-(1-x)(Bi_{0.5}Na_{0.5})TiO_3-xBaTiO_3$ [NKN-(1-x)BNT-xBT] ceramics were investigated. The lead-free NKN-(1-x)BNT-xBT ceramics were fabricated by a conventional mixed oxide method. The results indicate that the addition of $BaTiO_3$ significantly influences the sintering, microstructure, phase transition and electrical properties of NKN-BNT ceramics. A gradual change in the piezoelectric and dielectric properties was observed with the increase of BT contents. The dielectric constant, piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) increased at the morphotropic phase boundary (MPB). The $d_{33}$=184 pC/N, $k_p$=0.38, dielectric constant=1455 with dielectric loss value of less than 1% were obtained for the NKN-0.95BNT-0.05BT ceramics sintered at $1150^{\circ}C$ for 2h. These results demonstrate that the NKN-(1-x)BNT-xBT ceramics is an attractive candidate for lead-free piezoelectric materials.