• Title/Summary/Keyword: lead removal

Search Result 359, Processing Time 0.02 seconds

Effect of Heavy Metal Species on the Removal of Cu, Pb, and Cd Contaminated Soils Using Electrokinetic Process (Cu, Pb, 및 Cd로 오염된 토양의 동전기적 방법에 의한 제거에 있어 중금속 종이 미치는 영향)

  • Sin, Hyeon Mu;Yun, Sam Seok
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 2004
  • Three kinds of toxic heavy metals, such as lead, copper, and cadmium, existing abundantly in contaminated soils were selected to investigate pH change, electroosmotic flow, and the removal rate in the application of electrokinetic process. In the change of pHs, they reached to about 12 and 2 at each cathodic and anodic region, respectively, and maintained for reaction being proceeded. Electroosmotic flow rates were not influenced by the kind of metal species but by electropotential gradient. On the soils contaminated by each metal, the removal rate of Cd was the fastest among three as in the order of Cd>Pb>Cu. While on the soils contaminated by mixed metal species, Cu was the fastest. Metal species transported by electrokinetic processes were distributed in between 0.9 and 1.0 of normalized region. In the case of soils contaminated by one kind of metal. the relative concentrations of Pb and Cd estimated in between normalized region 0.9 and 1.0 were 5.2 and 5.7, respectively.

Evaluation of Biological and Physico-chemical Detoxification Methods for the Removal of Inhibitors in Lignocellulose Hydrolysate (목질계 바이오매스 가수분해물 중 발효저해 물질에 대한 생물학적 및 물리화학적 무독화 방법의 평가)

  • Cho, Dae-Haeng;Kim, Yong-Hwan
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.415-419
    • /
    • 2009
  • In this study, the detoxification methods were evaluated for the removal of fermentation inhibitors from synthetic solution containing the composition similar to the lignocellulosic hydrolysate. The enzyme peroxidase and laccase were used as a biological treatment method. The physico-chemical methods such as adsorption and ion exchange were applied by using activated charcoal and ion exchange resins. The enzyme peroxidase showed a excellent removal of phenolic compounds. The 5-HMF and furfural were completely removed by activated charcoal. The anion exchange resin showed a good result for detoxification of acetic acid. The activated charcoal and ion exchange resins lead to a loss of sugars more or less. The choice of detoxification method must be made after considering the composition and inhibitors in hydrolysates.

Effect of base isolation systems on increasing the resistance of structures subjected to progressive collapse

  • Tavakoli, Hamid R.;Naghavi, Fahime;Goltabar, Ali R.
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.639-656
    • /
    • 2015
  • Seismic isolation devices are commonly used to mitigate damages caused by seismic responses of structures. More damages are created due to progressive collapse in structures. Therefore, evaluating the impact of the isolation systems to enhance progressive collapse-resisting capacity is very important. In this study, the effect of lead rubber bearing isolation system to increase the resistance of structures against progressive collapse was evaluated. Concrete moment resisting frames were used in both the fixed and base-isolated model structures. Then, progressive collapse-resisting capacity of frames was investigated using the push down nonlinear static analysis under gravity loads that specified in GSA guideline. Nonlinear dynamic analysis was performed to consider dynamic effects column removal under earthquake. The results of the push down analysis are highly dependent on location of removal column and floor number of buildings. Also, seismic isolation system does not play an effective role in increasing the progressive collapse-resisting capacities of structures under gravity loads. Base isolation helps to localize failures and prevented from spreading it to intact span under seismic loads.

Clay adsorptive membranes for chromium removal from water

  • Kashaninia, Fatemeh;Rezaie, Hamid Reza;Sarpoolaky, Hossein
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.259-264
    • /
    • 2019
  • Cost effective clay adsorptive microfiltration membranes were synthesized to remove Cr (III) from high polluted water. Raw and calcined bentonite were mixed in order to decrease the shrinkage and also increase the porosity; then, 20 wt% of carbonate was added and the samples, named B (without carbonate) and B-Ca20 (with 20 wt% calcium carbonate) were uniaxially pressed and after sufficient drying, fired at $1100^{\circ}C$ for 3 hours. Then, physical and mechanical properties of the samples, their phase analyses and microstructure and also their ability for Cr(III) removal from high polluted water (including 1000 ppm Cr (III) ions) were studied. Results showed that the addition of calcium carbonate lead the porosity to increase to 33.5% while contrary to organic pore formers like starch, due to the formation of wollastonite, the mechanical strength not only didn't collapse but also improved to 36.77 MPa. Besides, sample B-Ca20, due to the presence of wollastonite and anorthite, could remove 99.97% of Cr (III) ions. Hence, a very economic and cost effective combination of membrane filtration and adsorption technology was achieved for water treatment which made microfiltration membranes act even better than nanofiltration ones without using any adsorptive nano particles.

A Case Series of Ingested Open Safety Pin Removal Using a Proposed Endoscopic Removal Technique Algorithm

  • Demiroren, Kaan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.5
    • /
    • pp.441-446
    • /
    • 2019
  • Purpose: Safety pin ingestion is common in some regions of the world and may lead to severe morbidity and mortality. The aim of this study was to present some practical suggestions for ingested safety pins using an accompanying algorithm, presented for the first time in the literature to the best of our knowledge. Methods: Twenty children with ingested safety pins during a 4-year period were retrospectively included in the study. Results: Median age of patients was 9.5 months (interquartile range, 6.3-14 months), and 70% were girls. On endoscopic examination, safety pins were observed in the stomach (25%), duodenal bulb (20%), upper esophagus (15%), middle esophagus (10%), and second part of the duodenum (10%) but were not observed in 20% of the cases. Safety pins were removed using endoscopy in 15 cases (75%). In four cases (20%), no safety pin was observed on endoscopic examination. In one case (5%) involving a 6-month-old infant, the safety pin could not be removed although it was observed using endoscopy. No surgical intervention was needed for any patient. No complications such as perforation or deaths developed, except for erosions, due to the foreign body removal procedure. Conclusion: Safety pins are easily removed endoscopically. The best option is to remove the safety pin using endoscopy while it is still in the esophagus and stomach. For this reason, endoscopic procedures should be performed as soon as possible in children who have ingested safety pins.

Removal of NOx using electron beam process with NaOH spraying

  • Shin, Jae Kyeong;Jo, Sang-Hee;Kim, Tae-Hun;Oh, Yong-Hwan;Yu, Seungho;Son, Youn-Suk;Kim, Tak-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.486-492
    • /
    • 2022
  • Nitrogen oxides (NOx; NO and NO2) are major air pollutants and can cause harmful effects on the human body. Electron Beam Flue Gas Treatment (EBFGT) is a technology that generates electrons with an energy of 0.5-1 MeV using electron accelerators and effectively processes exhaust gases. In this study, NOx was removed using an electron beam accelerator with spraying additives (NaOH and NH4OH). NO and NO2 were 100% and more than 94% removed, respectively, at an electron beam absorbed dose of 20 kGy and an additive concentration of 0.02 M (mol/L). In most cases, NOx was removed better with lower initial NOx concentrations and higher electron beam absorbed doses. As the irradiation strength (mA) of the electron beam increases, the probability of electron impact on the material accordingly rises, which may lead to increase removal efficiency. The results of the present study show that the continuous electron beam process using additives achieved more effective removal efficiency than either individual process (wet-scrubbing or EB irradiation only).

Treatment of Heavy Metal Wastewater by Pricipitation and Adsorption (침전법과 흡착법을 이용한 중금속 처리)

  • 심순보;이요상
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1992.07a
    • /
    • pp.325-328
    • /
    • 1992
  • The purpose of this research is to develop the technique of heavy metal removal from wastewater. The research is divided into two parts, one part uses complex precipitation and the other uses adsorption. In the first part of the study, humic acid is used as the complex agent, humic acid is a polyelectrolyte with a high complexation affinity. Lead, copper, zinc and cadmium were studied for their complex precipitation efficiencies. In the batch studies, humic acid was effective in removing 100% of the lead and 48.2% of the copper respectively from wastewater without anytreatment. The efficiency of cadmium and zinc, however, was very low. In the second part of the study, wastewater is introduced at the top of a silicagel adsorption column and then bottom effluent concentration is analyzed. The results of the analysis are used to draw a breakthrough curve.

  • PDF

A Study on Fluxless Soldering using Solder Foil (솔더 포일을 이용한 무플럭스 솔더링에 관한 연구)

  • 신영의;김경섭
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.100-107
    • /
    • 1998
  • This paper describes fluxless soldering of reflow soldering process using solder foil instead of solder pastes. There is an increasing demand for the reliable solder connection in the recent high density microelectronic components technologies. And also, it is problem fracture of an Ozone layer due to freon as which is used to removal of remained flux on the substrate. This paper discussed joining phenomena, boudability and joining processes of microelectronics devices, such as between outer lead of VLSI package and copper pad on a substrate without flux. The shear strength of joints is 8 to 13 N using Sn/Pb (63/37 wt.%) solder foil with optimum joining conditions, meanwhile, in case of using Sn/In (52/48 wt.%) solder foil, it is possible to bond with low heating temperature of 550 K, and accomplish to high bonding strength of 25N in condition heating temperature of 650K. Finally, this paper experimentally shows fluxless soldering using solder foil, and accomplishes key technology of microsoldering processes.

  • PDF

Cylindrical Grinding Integrity - A Review on Surface Integrity

  • Alagumurthi, N.;Palaniradja, K.;Soundararajan, V.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.24-44
    • /
    • 2007
  • Cylindrical grinding is one of the important metal cutting processes used extensively in the finishing operation of discrete components. The inherent high cutting temperature in grinding if not controlled may lead to rapid tool wear, which in turn will lead to dimensional inaccuracy. The very nature of the grinding mechanism in material removal impairs the grounded surfaces by inducing residual stress, micro cracks and other thermal damages at the machined surface. This paper is an attempt to review some of the surface integrity issues in cylindrical grinding taken up and reported by number of researchers over the years. This review may have been planned to be useful to the researchers and other professionals interested to work on grinding.

A Characteristics of $Pb^{2+}$ and $Cd^{2+}$ for FWC Adsorbent (FWC흡착제의 납/카드뮴 흡착특성)

  • Lee, Jong-Young;Kim, Young-Woong;Hong, Ki-Kwon;Han, Jung-Geun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1507-1510
    • /
    • 2009
  • In this study, Batch Test was carried out on the adsorption abilities to heavy metal of FWC, which occurred during the carbonization process was part of recycling methods of food waste. The heavy metals used in the experiment were lead and cadmium; mixing its solution with carbonized ratio of 50:1, respectively. The different concentrations were applied with 50, 100, 200, 400, and $800\;{\mu}g/m{\ell}$. When, the initial concentration is less than 200mg/l, there has been a high removal ratio of 20% to 50%. Comparing the test results on Lanmmuir and Freundlich adsorption isotherms, the Freundilich adsorption isotherm was well compatible.

  • PDF