• Title/Summary/Keyword: lead plate

Search Result 314, Processing Time 0.028 seconds

Evaluation of Mechanical Property for Pb-free Solder/Ni Plate Joints with Artificial Aging Time (인공시효시간에 따른 Ni 기판 Pb-free 솔더접합부의 기계적 물성평가)

  • Park, So Young;Yang, Sung Mo;Yu, Hyo Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.467-471
    • /
    • 2015
  • Thus far, solders used in electronics remain lead-based. Pb-free solutions in electronic components and systems are receiving increased attention in the semiconductor and electronics industries. Pb-free materials currently in used are Sn-37Pb, Sn-4Ag and Sn-4Ag-0.5Cu/Ni plate joints. In this study, solder alloys were used at high temperatures for artificial aging processing that was performed at $150^{\circ}C$ for 0hr, 100hr, 200hr, 400hr, 600hr and 1000hr. The SP test was conducted at $30^{\circ}C$ and $50^{\circ}C$. As a result, the maximum shear strength of all the specimens decreased with the increase in artificial aging time and temperature of the SP test. In addition, Pb-free solders showed higher total fracture energy compared with Sn-37Pb at high temperatures. The mechanical properties of Sn-4Ag-0.5Cu solder/Ni plate joints remained in excellent conditions in electronic parking systems at high temperatures.

Fibre composite railway sleeper design by using FE approach and optimization techniques

  • Awad, Ziad K.;Yusaf, Talal
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.231-242
    • /
    • 2012
  • This research work aims to develop an optimal design using Finite Element (FE) and Genetic Algorithm (GA) methods to replace the traditional concrete and timber material by a Synthetic Polyurethane fibre glass composite material in railway sleepers. The conventional timber railway sleeper technology is associated with several technical problems related to its durability and ability to resist cutting and abrading action of the bearing plate. The use of pre-stress concrete sleeper in railway industry has many disadvantages related to the concrete material behaviour to resist dynamic stress that may lead to a significant mechanical damage with feasible fissures and cracks. Scientific researchers have recently developed a new composite material such as Glass Fibre Reinforced Polyurethane (GFRP) foam to replace the conventional one. The mechanical properties of these materials are reliable enough to help solving structural problems such as durability, light weight, long life span (50-60 years), less water absorption, provide electric insulation, excellent resistance of fatigue and ability to recycle. This paper suggests appropriate sleeper design to reduce the volume of the material. The design optimization shows that the sleeper length is more sensitive to the loading type than the other parameters.

Sparsity-constrained Extended Kalman Filter concept for damage localization and identification in mechanical structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter;Loffeld, Otmar
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.741-749
    • /
    • 2018
  • Structural health monitoring (SHM) systems are necessary to achieve smart predictive maintenance and repair planning as well as they lead to a safe operation of mechanical structures. In the context of vibration-based SHM the measured structural responses are employed to draw conclusions about the structural integrity. This usually leads to a mathematically illposed inverse problem which needs regularization. The restriction of the solution set of this inverse problem by using prior information about the damage properties is advisable to obtain meaningful solutions. Compared to the undamaged state typically only a few local stiffness changes occur while the other areas remain unchanged. This change can be described by a sparse damage parameter vector. Such a sparse vector can be identified by employing $L_1$-regularization techniques. This paper presents a novel framework for damage parameter identification by combining sparse solution techniques with an Extended Kalman Filter. In order to ensure sparsity of the damage parameter vector the measurement equation is expanded by an additional nonlinear $L_1$-minimizing observation. This fictive measurement equation accomplishes stability of the Extended Kalman Filter and leads to a sparse estimation. For verification, a proof-of-concept example on a quadratic aluminum plate is presented.

Numerical analysis of reaction forces in blast resistant gates

  • Al-Rifaie, Hasan;Sumelka, Wojciech
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.347-359
    • /
    • 2017
  • Blast resistant gates are required to be lightweight and able to mitigate extreme loading effect. This may be achieved through innovative design of a gate and its supporting frame. The first is well covered in literature while the latter is often overlooked. The design of supporting frame depends mainly on the boundary conditions and corresponding reaction forces. The later states the novelty and the aim of this paper, namely, the analysis of reaction forces in supporting structure of rectangular steel gates subjected to "far-field explosions". Flat steel plate was used as simplified gate structure, since the focus was on reaction forces rather than behaviour of gate itself. The analyses include both static and dynamic cases using analytical and numerical methods to emphasize the difference between both approaches, and provide some practical hints for engineers. The comprehensive study of reaction forces presented here, cover four different boundary conditions and three length to width ratios. Moreover, the effect of explosive charge and stand-off distance on reaction forces was also covered. The analyses presented can be used for a future design of a possible "blast absorbing supporting frame" which will increase the absorbing properties of the gate. This in return, may lead to lighter and more operational blast resistant gates.

A Study on the Prediction and Control of Welding Deformations of Ship Hull Blocks (선체 블록의 용접변형 예측 및 제어를 위한 연구)

  • C.D. Jang;C.H. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.127-136
    • /
    • 2000
  • Welding deformations reduce the accuracy of ship hull blocks and decrease the productivity due to correction work. Preparing an error-minimizing guide at the design stage will lead to a high quality as well as high productivity. And a precise method to predict the weld deformation is an essential part of it. This paper proposes an efficient method to predict complicated weld deformations based on the inherent strain theory combined with the finite element method. The inherent strain is determined by the highest temperature and the degree of restraint. In order to calculate the inherent strain exactly, it is considered that the degree of restraint becomes different according to the fabrication stages in real structures. A simulation of a stiffened plate shows the applicability of this method to simple ship hull blocks.

  • PDF

A Study on fatigue Properties with Different Edge Margin for Hole Expansion Plate (홀 확장된 판재의 에지마진 변화에 따른 피로특성 연구)

  • Lee, Joon-Hyun;Lee, Dong-Suk;Lee, Hwan-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2383-2389
    • /
    • 2002
  • This paper describes an experimental study on fatigue life extension by using cold working process in fastener hole of aircraft structure. Cold working process was applied for A12024-7351 specimens by considering the effect of edge margin on fatigue life. It is generally recognized that cold working process offers a protective zone around fastener hole of aluminum aircraft structure due to the residual compressive stresses which lead to retardation of crack growth. Thus this process provides the beneficial effect of increasing the fatigue life of the component. there by decreasing maintenance costs. It has also been successfully incorporated into damage tolerance and structural integrity programs. Cold working specimens were tested at constant amplitude peak cyclic stresses. Fatigue life of cold working specimen compared with that of specimen fabricated with base material. The increase of fatigue life for cold working specimen is discussed by both considering the effect of residual compressive stresses measured by X-ray diffraction technique and quantitative effect of edge margin.

Therapeutic results and safety of postoperative radiotherapy for keloid after repeated Cesarean section in immediate postpartum period

  • Kim, Ju-Ree;Lee, Sang-Hoon
    • Radiation Oncology Journal
    • /
    • v.30 no.2
    • /
    • pp.49-52
    • /
    • 2012
  • Purpose: To evaluate the effectiveness and safety of postoperative radiotherapy for the treatment of keloid scars administered immediately after Cesarean section. Materials and Methods: A total of 26 postpartum patients with confirmed keloids resulting from previous Cesarean sections received either 12 or 15 Gy radiotherapy. The radiotherapy was divided into three 6 MeV electron beam fractions administered during the postpartum period immediately following the final Cesarean section. To evaluate ovarian safety, designated doses of radiation were estimated at the calculated depth of the ovaries using a solid plate phantom and an ionization chamber with the same lead cutout as was used for the treatment of Cesarean section operative scars and a tissue equivalent bolus. Results: In total, the control rate was 77% (20 patients), while six (23%) developed focally elevated keloids (ranging from 0.5 to 2 cm in length) in the middle of the primary abdominal scar. Five patients experienced mild hyperpigmentation. Nonetheless, most patients (96%) were satisfied with the treatment results. The estimated percentage of the applied radiation doses that reached the calculated depth of the ovaries ranged from 0.0033% to 0.0062%. Conclusion: When administered during the immediate postpartum period, postoperative electron beam radiotherapy for repeated Cesarean section scars is generally safe and produces good cosmetic results with minimal toxicity.

Consideration on Flash Fire of Fuel Tank by Plate and Projectile Impacts (외부위협체의 충돌에 의한 연료탱크의 순간화재 발생가능성에 대한 고찰)

  • Lee, Eun Min;Park, Ju Young;Lee, Hae Pyeong;Lee, Chang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.62-67
    • /
    • 2014
  • This study was performed to analyze the vulnerability of the situation in which combat system is shot by external projectile impacts. In developing combat system, it is vital to consider the survivability as well as its mission capability because it is directly connected with loss of lives. Especially, when the parts which are susceptible to fire are shot under battle situation, the system is exposed to the dangerousness and the situation when the parts such as fuel tanks are impacted by external projectile impacts can lead to flash fire as a result of the leakage of fuel. Therefore, in this study the possibility of flash fire was calculated by analyzing a variety of variables supposing that fuel tank in the combat system is shot. The aim of this study is to suggest effective methods in the basic steps when combat system is designed.

A Study on Edge Bridge Minimization of Fine Blanking Process (Fine Blanking의 가장자리 Bridge 최소화 방법에 관한 연구)

  • Kim, Gi-Tea
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.108-113
    • /
    • 2013
  • Industrialization and modernization of the beginning of the IT industry is growing very fast. Since telecommunications industry was developed rapidly, technologies about miniaturization and high-precision of parts have been actively developed to lead information revolution. generally, the entire shear surface of the product applying fine blanking technology must be very precise. Fine blanking is used to save cost by avoiding post-processing of the product. When using press blanking, it spends a lot of money on the production by using many post-processing. Fine blanking typically used in 0.5~18 mm thick steel plate. Because a lot of post-processing cost can be used to process, except for fine blanking. In order to develop components "CHANCE CONTENTS" in the fine blanking process, the purpose of this study is to minimize the edge of the bridge, secured 95% of the material thickness of the shear surface using the 1.6 mm thickness of the material SPCC. Blanking process by introducing after changing thickness through forging process, due to change in vee-rring force and counter force, the experimental amount of depressions and flatness and the shear surface were analyzed.

Changes in Balance Characteristics Affected by the Visual Information during Single Leg Stance (외발서기 시 시각정보 차단에 따른 인체 균형 특성 변화 분석)

  • Park, Jung-Hong;Kim, Gwang-Hoon;Youm, Chang-Hong;Son, Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1323-1329
    • /
    • 2011
  • The purpose of study was to analyze how the visual information affects balance control of individuals during single leg stance. A total of 27 young normal people (20 males and 7 females, age: $13.7{\pm}2.6$, height: $162.3{\pm}13.2$ cm, weight: $53.9{\pm}13.9$ kg) was voluntarily involved in the experiment. The subjects were requested to maintain balance for 20 seconds with eyes both open and closed on a force plate and then foot ground reaction data were collected for that duration. Results showed that mean velocity of COP in closed eyes condition was larger 1.84 times than that of the open-eyes condition and range of vertical angle was increased approximately one degree in the closed eyes condition. To accomplish a balance, the frequency power in mediolateral and anteroposterior components of the foot-ground reaction force was increased by 1.3~1.4 times. Consequently, visual absence during single leg stance can result in critical loss of balance and lead to instability of body control.