• Title/Summary/Keyword: lead measurement

Search Result 709, Processing Time 0.025 seconds

DESIGN OPTIMIZATION OF RADIATION SHIELDING STRUCTURE FOR LEAD SLOWING-DOWN SPECTROMETER SYSTEM

  • KIM, JEONG DONG;AHN, SANGJOON;LEE, YONG DEOK;PARK, CHANG JE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.380-387
    • /
    • 2015
  • A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as $^{235}U$, $^{239}Pu$, $^{241}Pu$, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux ($>10^{12}n/cm^2{\cdot}s$) neutron source comprised of a high-energy (30 MeV)/high-current (~2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (< $0.06{\mu}Sv/h$), a few shielding materials [high-density polyethylene (HDPE)eBorax, $B_4C$, and $Li_2CO_3$] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.

DEVELOPMENT OF LEAD SLOWING DOWN SPECTROMETER FOR ISOTOPIC FISSILE ASSAY

  • Lee, YongDeok;Park, Chang Je;Ahn, Sang Joon;Kim, Ho-Dong
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.837-846
    • /
    • 2014
  • A lead slowing down spectrometer (LSDS) is under development for analysis of isotopic fissile material contents in pyro-processed material, or spent fuel. Many current commercial fissile assay technologies have a limitation in accurate and direct assay of fissile content. However, LSDS is very sensitive in distinguishing fissile fission signals from each isotope. A neutron spectrum analysis was conducted in the spectrometer and the energy resolution was investigated from 0.1eV to 100keV. The spectrum was well shaped in the slowing down energy. The resolution was enough to obtain each fissile from 0.2eV to 1keV. The detector existence in the lead will disturb the source neutron spectrum. It causes a change in resolution and peak amplitude. The intense source neutron production was designed for ~E12 n's/sec to overcome spent fuel background. The detection sensitivity of U238 and Th232 fission chamber was investigated. The first and second layer detectors increase detection efficiency. Thorium also has a threshold property to detect the fast fission neutrons from fissile fission. However, the detection of Th232 is about 76% of that of U238. A linear detection model was set up over the slowing down neutron energy to obtain each fissile material content. The isotopic fissile assay using LSDS is applicable for the optimum design of spent fuel storage to maximize burnup credit and quality assurance of the recycled nuclear material for safety and economics. LSDS technology will contribute to the transparency and credibility of pyro-process using spent fuel, as internationally demanded.

Characteristics of Microwelded BLU CCFL Electrode in Terms of Glass Beading Heat Treatment Temperature (미세 용접된 BLU CCFL 전극의 유리비딩 열처리 온도에 따른 접합부 특성)

  • Kim, Gwang-Soo;Kim, Sang-Duck;Kwon, Hyuk-Dong
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.73-78
    • /
    • 2009
  • Characterization of the microweld CCFL electrode for the TFT-LCD backlight unit was carried out in terms of the glass beading heat treatment conditions. We evaluate the weld zone and parent metal of the microweld CCFL electrodes that were exposed to simulated glass beading heat treatment. The CCFL electrode was composed of the cup made with pure Ni, the pin made with pure Mo and the lead wire made with Ni-Mn alloy. Each part of the electrode was assembled together by micro spot welding process and then the assembled electrodes were exposed to simulated glass beading temperatures of $700^{\circ}C,\;750^{\circ}C$ and $800^{\circ}C$. The microstructures of the microweld CCFL electrode were observed by using optical microscope, scanning electron microscope and EDS. Micro-tensile and microhardness test were also carried out. The results indicated that the grain coarsening in the HAZs(heat affected zones) for both the cup-pin weld and pin-lead wire were exhibited and the grain coarsening of the HAZ for the cup and the lead wire was more obvious than the HAZ of the pin. The micro-tensile test revealed that the fracture occurred at the cup-pin weld zone for all test conditions. The fracture surface could be classified into two parts such as pin portion and cup portion including weld nugget. The failure was seemed to be initiated from the boundary between nugget and pin through the weld joint. The result of the microhardness measurement exhibited that the relatively low hardness value, about 105HV was recorded at the HAZ of the cup. This value was about 50% less than that of the original value of the cup. The reduction of the microhardness was considered as the cause of the grain coarsening due to welding process. It was also appeared that there was no change in electric resistance for the standard electrodes and heat treated electrodes.

50-300 keV X-ray Transmission Ratios for Lead, Steel and Concrete

  • Tae Hwan Kim;Kum Bae Kim;Geun Beom Kim;Dong Wook Kim;Sang Rok Kim;Sang Hyoun Choi
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.164-171
    • /
    • 2022
  • The number of facilities using radiation generators increases and related regulations are strengthened, the establishment of a shielding management and evaluation technology has become important. The characteristics of the radiation generator used in previous report differ from those of currently available high-frequency radiation generators. This study aimed to manufacture lead, iron, and concrete shielding materials for the re-verification of half-value layers, tenth-value layers, and attenuation curve. For a comparison of attenuation ratio, iron, lead, and concrete shields were manufactured in this study. The initial dose was measured without shielding materials, and doses measured under different types and thicknesses of shielding material were compared with the initial dose to calculate the transmission rate on 50-300 kVp X-ray. All the three shielding materials showed a tendency to require greater shielding thickness for higher energy. The attenuation graph showed an exponential shape as the thickness decreased and a straight line as the thickness increased. The difference between the measurement results and the previous study, except in extrapolated parts, may be due to the differences in the radiation generation characteristics between the generators used in the two studies. The attenuated graph measured in this study better reflects the characteristics of current radiation generators, which would be more effective for shield designing.

The Verification of Photoplethysmography Using Green Light that Influenced by Ambient Light (녹색광을 이용한 반사형 광용적맥파측정기의 주변광 간섭시 신호측정)

  • Chang, K.Y.;Ko, H.C.;Lee, J.J.;Yoon, Young Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.125-131
    • /
    • 2014
  • The purpose of this study is to verify the utility of reflected photoplethysmography sensor using two green light emitting diodes that influenced by ambient light. Recently it has been studied that green light emitting diode is suitable for light source of reflected photoplethysmography sensor at low temperature and high temperature. Another study showed that, green light is better for monitoring heart rate during motion than led light. However, it has a bad characteristic about ambient light noise. To verify the utility of reflected photoplethysmography sensor using green light emitting diode, this study measures the photoplethysmography signal that is distorted by ambient light and will propose a solution. This study has two parts of research method. One is measurement system that composed sensor and board. The sensor is made up PE-foam and Non-woven fabric for flexible sensor. The photoplethysmography signal is measured by measurement board that composed high-pass filter, low-pass filter and amplifier. Ambient light source is light bulb and white light emitting diode that has three steps brightness. Photoplethysmography signal is measured with lead II electrocardiography signal at the same time and it is measured at the finger and radial artery for 1 minute, 1000 Hz sampling rate. The lead II electrocardiography signal is a standard signal for heart rate and photoplethysmography signal that measured at the finger is a standard signal for waveform. The test is repeated 3 times using three sensor. The data is processed by MATLAB to verify the utility by comparing the correlation coefficient score and heart rate. The photoplethysmography sensor using two green light emitting diodes is shown better utility than using one green light emitting diode and red light emitting diode at the ambient light. The waveform and heart rate that measured by two green light emitting diodes are more identical than others. The amount of electricity used is less than red light emitting diode and error peak detectability factor is the lowest.

Proficiency testing of cadmium and lead in polypropylene resin (폴리프로필렌 수지 중 카드뮴과 납 측정 숙련도시험)

  • Cho, K.H.;Lim, M.C.;Min, H.S.;Han, M.S.;Song, H.J.;Park, C.J.
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.183-192
    • /
    • 2007
  • The various environmental regulation directives such as RoHS (restriction of hazardous substances in electrical and electronic products) and WEEE (waste from electrical and electronic equipments) are practically used as the technical barrier in international trade (TBT) of vehicles and electrical and electronic products recently. Regarding such an environmental regulation, Korea Research Institute of Standards Science (KRISS) organized a proficiency testing scheme to establish the reliability of measurement results produced by the relevant research institutes and test laboratories in Korea. Participants were 31 laboratories related to production of the electrical and electronic equipments and mobile vehicles. Two polypropylene samples of pellet type were employed as the proficiency testing materials (PTMs). Cadmium and lead were the analytes chosen among six components regulated in European Union (EU) RoHS directive. The PTMs were sent to the participants by post on September $1^{st}$ 2006, and deadline for results submission were October $10^{th}$ 2006. The results of each laboratory were evaluated in comparison with KRISS reference values using Robustic Z-score and Youden plot methods. The results of the various sample digestion methods were also compared. Most of participants reported good agreement within 10 % range of reference values. However, results from several laboratories showed significant biases from reference values. These laboratories should establish the quality assurance system for improvement of the measurement reliability.

The study on the scattering ratio at the edge of the block according to the increasing block thickness in electron therapy (전자선 치료 시 차폐블록 두께 변화에 따른 블록 주변 선량에 관한 연구)

  • Park, Zi On;Gwak, Geun Tak;Park, Ju Kyeong;Lee, Seung Hun;Kim, Yang Su;Kim, Jung Soo;Kwon, Hyoung Cheol;Lee, Sun Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • Purpose: The purpose is to clarify the effect of additional scattering ratio on the edge of the block according to the increasing block thickness with low melting point lead alloy and pure lead in electron beam therapy. Methods and materials: $10{\times}10cm^2$ Shielding blocks made of low melting point lead alloy and pure lead were fabricated to shield mold frame half of applicator. Block thickness was 3, 5, 10, 15, 20 (mm) for each material. The common irradiation conditions were set at 6 MeV energy, 300 MU / Min dose rate, gantry angle of $0^{\circ}$, and dose of 100 MU. The relative scattering ratio with increasing block thickness was measured with a parallel plate type ion chamber(Exradin P11) and phantom(RW3) by varying the position of the shielding block(cone and on the phantom), the position of the measuring point(surface ans depth of $D_{max}$), and the block material(lead alloy and pure lead). Results : When (depth of measurement / block position / block material) was (surface / applicator / pure lead), the relative value(scattering ratio) was 15.33 nC(+0.33 %), 15.28 nC(0 %), 15.08 nC(-1.31 %), 15.05 nC(-1.51 %), 15.07 nC(-1.37 %) as the block thickness increased in order of 3, 5, 10, 15, 20 (mm) respectively. When it was (surface / applicator / alloy lead), the relative value(scattering ratio) was 15.19 nC(-0.59 %), 15.25 nC(-0.20 %), 15.15 nC(-0.85 %), 14.96 nC(-2.09 %), 15.15 nC(-0.85 %) respectively. When it was (surface / phantom / pure lead), the relative value(scattering ratio) was 15.62 nC(+2.23 %), 15.59 nC(+2.03 %), 15.53 nC(+1.67 %), 15.48 nC(+1.31 %), 15.34 nC(+0.39 %) respectively. When it was (surface / phantom / alloy lead), the relative value(scattering ratio) was 15.56 nC(+1.83 %), 15.55 nC(+1.77 %), 15.51 nC(+1.51 %), 15.42 nC(+0.92 %), 15.39 nC(+0.72 %) respectively. When it was (depth of $D_{max}$ / applicator / pure lead), the relative value(scattering ratio) was 16.70 nC(-10.87 %), 16.84 nC(-10.12 %), 16.72 nC(-10.78 %), 16.88 nC(-9.93 %), 16.90 nC(-9.82 %) respectively. When it was (depth of $D_{max}$ / applicator / alloy lead), the relative value(scattering ratio) was 16.83 nC(-10.19 %), 17.12 nC(-8.64 %), 16.89 nC(-9.87 %), 16.77 nC(-10.51 %), 16.52 nC(-11.85 %) respectively. When it was (depth of $D_{max}$ / phantom / pure lead), the relative value(scattering ratio) was 17.41 nC(-7.10 %), 17.45 nC(-6.88 %), 17.34 nC(-7.47 %), 17.42 nC(-7.04 %), 17.25 nC(-7.95 %) respectively. When it was (depth of $D_{max}$ / phantom / alloy lead), the relative value(scattering ratio) was 17.45 nC(-6.88 %), 17.44 nC(-6.94 %), 17.47 nC(-6.78 %), 17.43 nC(-6.99 %), 17.35 nC(-7.42 %) respectively. Conclusions: When performing electron therapy using a shielding block, the block position should be inserted applicator rather than the patient's body surface. The block thickness should be made to the minimum appropriate shielding thickness of each corresponding using energy. Also it is useful that the treatment should be performed considering the influence of scattering dose varying with distance from the edge of block.

A Study on the Performance Measurement Method for National Research and Development Projects (국가 연구개발(R&D) 투자의 성과 측정 방법 연구)

  • Yim, Sunjip;Kim, Sungcheol;Shin, Minsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4148-4156
    • /
    • 2014
  • The aim of this paper was to suggest a national R&D performance measurement index from a new perspective. Government is trying to transit the R&D paradigm from 'catch-up' into 'lead- forward'. The problem of the existing performance evaluation was first identified, and the performance evaluation method of domestic & overseas research center & government was then reviewed. In particular, this study first referred to the creation & innovation indices, and focused on the national innovation and R&D ecosystem. Next, D'Aveni's Hypercompetition theory was applied to suggest a new performance measurement index, and AHP analysis interviewed from the domestic R&D performance evaluation experts was performed. This study contributes to the new national R&D performance index for the creative economy.

System Design for Real-Time Measuring of Power Quality and Harmonics Distortion using Digital Signal Processor (Digital Signal Processor를 이용한 실시간 전력 요소와 왜율 측정 시스템 설계)

  • kim, Geun-Jun;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1283-1289
    • /
    • 2016
  • Electrical energy is the essential resource for modern society. Recently, the demand for power was significantly increased. Increase of power demand has lead to a decrease in the power quality. Power quality in modern society has been an important factor that can cause a major problem throughout the home and general industry. Therefore, we need a system for preventing the power quality problems. To avoid power issues, it is important that the measurement of the power quality and initial response. In this paper, we propose real-time power quality measurement system and harmonics monitoring system. We design the system using DM240001 board include dsPIC33FJ256GP710A of microchip. This system can adapt three-phase three-wire system. And optimized the algorithm, we can measure momentary changes of the power system. In addition, designed system can measure harmonics distortion like to VTHD, ITHD and ITDD for 31th harmonics.

Development of Smart Active Layer Sensor (I) : Theory and Concept Study (스마트 능동 레이어 센서 개발 (I): 이론 및 개념 연구)

  • Yoon, Dong-Jin;Lee, Young-Sup;Kwon, Jae-Hwa;Lee, Sang-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.465-475
    • /
    • 2004
  • This paper is the first part of the study on the development of a smart active layer (SAL) sensor, which consists of two parts. In this first part, the theory and concept of the SAL sensor is investigated, which is designed for the detection of elastic waves caused by internal cracks and damages in structures. For the development SAL sensor, (i) the basic theory of elastic waves was studied, (ii) the feasible study of the SAL as an elastic waves detection sensor using the finite element analysis (FEA) with respect to a piezoceramic disc was performed. (iii) the comparison of performances between some piezoceramic sensors and a commercial acoustic emission (AE) sensor was accomplished to ensure the applicability by the experimental means, such as a pencil lead break test. Also, the conceptional study for the SAL sensor, which can be utilized for the effective detection and locating of defects by the arrangement of regularly distributed sensors, was discussed.