• Title/Summary/Keyword: leaching potential

Search Result 157, Processing Time 0.021 seconds

Assessment of Adsorption Capacity of Mushroom Compost in AMD Treatment Systems (광산배수 자연정화시설 내 버섯퇴비의 중금속 흡착능력 평가)

  • Yong, Bo-Young;Cho, Dong-Wan;Jeong, Jin-Woong;Lim, Gil-Jae;Ji, Sang-Woo;Ahn, Joo-Sung;Song, Ho-Cheol
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Acid mine drainage (AMD) from abandoned mine sites typically has low pH and contains high level of various heavy metals, aggravating ground- and surface water qualities and neighboring environments. This study investigated removal of heavy metals in a biological treatment system, mainly focusing on the removal by adsorption on a substrate material. Bench-scale batch experiments were performed with a mushroom compost to evaluate the adsorption characteristics of heavy metals leached out from a mine tailing sample and the role of SRB in the overall removal process. In addition, adsorption experiments were perform using an artificial AMD sample containing $Cd^{2+}$, $Cu^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ to assess adsorption capacity of the mushroom compost. The results indicated Mn leached out from mine tailing was not subject to microbial stabilization or adsorption onto mushroom compost while microbially mediated stabilization played an important role in the removal of Zn. Fe leaching significantly increased in the presence of microbes as compared to autoclaved samples, and this was attributed to dissolution of Fe minerals in the mine tailing in a response to the depletion of $Fe^{3+}$ by iron reduction bacteria. Measurement of oxidation reduction potential (ORP) and pH indicated the reactive mixture maintained reducing condition and moderate pH during the reaction. The results of the adsorption experiments involving artificial AMD sample indicated adsorption removal efficiency was greater than 90% at pH 6 condition, but it decreased at pH 3 condition.

Studies on the Interpretative Classification of Paddy Soils in Korea I : A Study on the Classification of Sandy Paddy Soils (우리나라 답토양(畓土壌)의 실용적분류(実用的分類)에 관(関)한 연구(硏究) -제1보(第一報) 사질답(砂質畓) 분류(分類)에 관(関)하여)

  • Jung, Yeun-Tae;Yang, Euy-Seog;Park, Rae-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.2
    • /
    • pp.128-140
    • /
    • 1982
  • The distribution and practical classification of sandy paddy soils, which have the most extensive acreage among low productive paddy soils in Korea and have distinctive improvement effects, were studied to propose a tentative new classification system of sandy textured paddy soils as a means of improving the "Paddy Soil Type Classification" scheme used. The results are summarized as follows; 1. The potential productivity of sandy textured paddy soils was about 86% of normal paddy and the coefficient of variation was relatively high indicating that the properties of soils included were not sufficiently homogeneous. 2. As the poorly drained and halomorphic (> 16 mmhos/cm of E.C. at $25^{\circ}C$) sandy soils are not included in the "Sandy Soil" type according to the criteria of "Soil Type Classification", the recommendation of "adding clay earth" become complicated, and the soil type have to change when the salts washed away or due to ground water table fluctuations. 3. Coarse textured soils were entirely included in the "Sandy Soils" in the tentative criteria of sandy soil classification proposed, and the sandy soils were subdivided into 4 subtypes that is "Oxidized leaching sandy paddy", Red-ox. intergrading sandy paddy", "Reduced accumulating sandy paddy" and "Reduced halomorphic sandy paddy". The system of sandy soil classification proposed were consisted of following categories; Type (Sandy paddy)-Sub-type (4)-Texture family (5)-Soil series (48). 4. The variation of productivities according to the proposed scheme was more homogenized than that of the present device. 5. The total extent of sandy paddy soils was 409, 902 ha (32.3% of total paddy) according to the present classification system, but the extent reached 492,983 ha (38.9%) by the proposed system. The provinces of Gyeong-gi (88.923ha), Jeon-bug (69.717 ha), Gyeong-bug (55.390 ha) have extensive acreage of sandy paddy soils, and the provinces that had high ratio of sandy paddy soils were Gang-weon (58.9%), Gyeong-gi (50.5%), Chung-bug (48.5%), Jeon-bug (41.0%) etc. The ratio was increased by the proposed scheme, e.g. 71.4% in the case of Gang-weon prov. 6. According to the suitability group of paddy soils, the sandy soils mostly belong to 3 class (69.1%) and 4 class (29.2%). Coarse loamy textural family (59.2%) and coarse silty (16.1 %) soils were dominantly distributed. 7. The "Red-ox. intergrading subtype" of sandy paddy pertinent to 49.6% (245,012 ha) while the "Oxidized leaching sub-type" reaches to 33.5% (64,890 ha) and the remained 16.9% (83,081ha) belong to "Reduced accumulating sub-type (14.0%) and "Reduced halomorphic sub-type (2.9%)" according to the proposed scheme.

  • PDF

Prediction of Potential Risk Posed by a Military Gunnery Range after Flood Control Reservoir Construction (홍수조절지 건설 후 사격장 주변지역의 위해성예측 사례연구)

  • Ryu, Hye-Rim;Han, Joon-Kyoung;Nam, Kyoung-Phile;Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.1
    • /
    • pp.87-96
    • /
    • 2007
  • Risk assessment was carried out in order to improve the remediation and management strategy on a contaminated gunnery site, where a flood control reservoir is under construction nearby. Six chemicals, including explosive chemicals and heavy metals, which were suspected to possess risk to humans by leaching events from the site were the target pollutants for the assessment. A site-specific conceptual site model was constructed based on effective, reasonable exposure pathways to avoid any overestimation of the risk. Also, conservative default values were adapted to prevent underestimation of the risk when site-specific values were not available. The risks of the six contaminants were calculated by API's Decision Support System for Exposure and Risk Assessment with several assumptions. In the crater-formed-area(Ac), the non-carcinogenic risks(i.e., HI values) of TNT(Tri-Nitro-Toluene) and Cd were slightly larger than 1, and for RDX(Royal Demolition Explosives), over 50. The total non-carcinogenic risk of the whole gunnery range calculated to a significantly high value of 62.5. Carcinogenicity of Cd was estimated to be about $10^{-3}$, while that of Pb was about $5\;{\times}\;10^{-4}$, which greatly exceeded the generally acceptable carcinogenic risk level of $10^{-4}{\sim}10^{-6}$. The risk assessment results suggest that an immediate remediation practice for both carcinogens and non-carcinogens are required before the reservoir construction. However, for more accurate risk assessment, more specific estimations on condition shifts due to the construction of the reservoir are required, and more over, the effects of the pollutants to the ecosystem is also necessary to be evaluated.

Characterization on the Behavior of Heavy Metals and Arsenic in the Weathered Tailings of Songcheon Mine (송천광산의 풍화광미 내 중금속 및 비소 거동 특성)

  • Lee, Woo-Chun;Kim, Young-Ho;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.125-139
    • /
    • 2010
  • Behavior of heavy metals and arsenic in the tailings of Songcheon Au-Ag mine was characterized via both mineralogical and geochemical methods. Mineral composition of the tailings was investigated by X-ray diffractometry, energy-dispersive spectroscopy, and electron probe micro-analyzer (EPMA) and total concentrations of heavy metals and arsenic and their chemical forms were analyzed by total digestion of aqua regia and sequential extraction method, respectively. The results of mineralogical study indicate that the tailings included mineral particles of resinous shape mainly consisting of galena, sphalerite, pyrite, quartz, and scorodite, and specifically socordite was identified in the form of matrix. EPMA quantitative analyses were performed to evaluate the weatherability of each mineral, and the results suggest that it decreased in the sequence of arsenopyrite > galena > sphalerite > pyrite. The weathering pattern of galena was observed to show distinctive zonal structure consisting of secondary minerals such as anglesite and beudantite. In addition, almost all of arsenopyrite has been altered to scorodite existing asmatrix and galena, sphalerite, and pyrite which have lower weatherability than arsenopyrite were identified within the matrix of scorodite. During the process of alteration of arsenopyrite into scorodite, it is likely that a portion of arsenic was lixiviated and caused a great deal of detrimental effects to surrounding environment. The results of EPMA quantitative analyses verify that the stability of scorodite was relatively high and this stable scorodite has restrained the weathering of other primary minerals within tailings as a result of its coating of mineral surfaces. For this reason, Songcheon tailings show the characteristics of the first weathering stage, although they have been exposed to the surface environment for a long time. Based on the overall results of mineralogical and geochemical studies undertaken in this research, if the tailings are kept to be exposed to the surface environment and the weathering process is continuous, not only hazardous heavy metals, such as lead and arsenic seem to be significantly leached out because their larger portions are being partitioned in weakly-bound (highly-mobile) fractions, but the potential of arsenic leaching is likely to be high as the stability of scorodite is gradually decreased. Consequently, it is speculated that the environmental hazard of Songcheon mine is significantly high.

Assessment of Environmentally Sound Function on the Increasing of Soil Fertility by Korean Organic Farming (한국 토착유기농업의 토양비옥도 증진책에 대한 환경보전적 기능 평가)

  • Sohn, Sang-Mok;Han, Do-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.193-204
    • /
    • 2000
  • In order to get some basic data on environmental friendly function by Korean organic farming, the chemical characteristics of soil were determined on 100 farm cultivating site in Paldang watershed area of Great Seoul. The EC and content of $NO_3-N$ and Av. $P_2O_5$ in topsoil(0~30cm) showed $2.30dS\;m^{-1}$, $82mg\;kg^{-1}$, $918mg\;kg^{-1}$ in the soil cultivated chinese cabbage. $2.29dS\;m^{-1}$, $86mg\;kg^{-1}$, $954mg\;kg^{-1}$ in the soil of lettuce, $1.83dS\;m^{-1}$, $66mg\;kg^{-1}$, $1114mg\;kg^{-1}$ in the soil of crown daisy. These salt accumulation(EC) and the high concentration of mineral content in topsoil such as nitrate and phosphate showed the soils of organic farming were contaminated by practice of organic farming for the maintenance strategy of soil fertility. The $NO_3-N$ and Av. $P_2O_5$ in the subsoil(30~60cm) showed $75mg\;kg^{-1}$ and $641mg\;kg^{-1}$, $72mg\;kg^{-1}$ and $466mg\;kg^{-1}$, $42mg\;kg^{-1}$ and $873mg\;kg^{-1}$ in soil cultivated chinese cabbage, lettuce and crown daisy respectively. It indicates eventually the high concentration of nitrate and phosphate in topsoil caused penetration to subsoil, and the high concentration of mineral contents in subsoil indicate the potential risk of leaching of ground water by Korean organic farming. The positive correlation at 1% between EC and $NO_3-N$, $K_2O$, T-C, $P_2O_5$ and T-N show the salt accumulation in the both soil depth of Korean organic farming were caused by minerals such as $NO_3-N$, $K_2O$, T-C, $P_2O_5$ and T-N by overuse of organic fertilizer.

  • PDF

Zeolitization of the Dacitic Tuff in the Miocene Janggi Basin, SE Korea (장기분지 데사이트질 응회암의 불석화작용)

  • Kim, Jinju;Jeong, Jong Ok;Shinn, Young-Jae;Sohn, Young Kwan
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.63-76
    • /
    • 2022
  • Dacitic tuffs, 97 to 118 m thick, were recovered from the lower part of the subsurface Seongdongri Formation, Janggi Basin, which was drilled to assess the potential for underground storage of carbon dioxide. The tuffs are divided into four depositional units(Unit 1 to 4) based on internal structures and particle componentry. Unit 1 and Units 3/4 are ignimbrites that accumulated in subaerial and subaqueous settings, respectively, whereas Unit 2 is braided-stream deposits that accumulated during a volcanic quiescence, and no dacitic tuff is observed. A series of analysis shows that mordenite and clinoptilolite mainly fill the vesicles of glass shards, suggesting their formation by replacement and dissolution of volcanic glass and precipitation from interstitial water during burial and diagenesis. Glass-replaced clinoptilolite has higher Si/Al ratios and Na contents than the vesicle-filling clinoptilolite in Units 3. However, the composition of clinoptilolite becomes identical in Unit 4, irrespective of the occurrence and location. This suggests that the Si/Al ratio and pH in the interstitial water increased with time because of the replacement and leaching of volcanic glass, and that the composition of interstitial water was different between the eastern and western parts of the basin during the formation of the clinoptilolite in Units 1 and 3. It is also inferred that the formation of the two zeolite minerals was sequential according to the depositional units, i.e., the clinoptilolite formed after the growth of mordenite. To summarize, during a volcanic quiescence after the deposition of Unit 1, pH was higher in the western part of the basin because of eastward tilting of the basin floor, and the zeolite ceased to grow because of the closure of the pore space as a result of the growth of smectite. On the other hand, clinoptilolite could grow in the eastern part of the basin in an open system affected by groundwater, where braided stream was developed. Afterwards, Units 3 and 4 were submerged under water because of the basin subsidence, and the alkali content of the interstitial water increased gradually, eventually becoming identical in the eastern and western parts of the basin. This study thus shows that volcanic deposits of similar composition can have variable distribution of zeolite mineral depending on the drainage and depositional environment of basins.

Phytoplankton Response to Short-term Environmental Changes in the Vicinity of a Fish Cage Farm of Tongyeong Obi in Summer (통영 오비도 어류양식장 주변에서 하계 수계 내 단주기 환경요인의 변화에 따른 미세조류 반응)

  • Lee, Minji;Baek, Seung Ho
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.62-69
    • /
    • 2017
  • In order to assess the potential environmental factors in the vicinity of a fish cage farm, we investigated the biotic and abiotic factors during a short-term period in summer 2016 in two inner stations of Tongyeong Obi. High water temperature on August 10th was apparent among the full depth of up to 29℃, which might have been related to the abnormally high temperatures of large amounts of the Changjiang River discharge along the Tongyeong coast. The concentration of nitrate+nitrite, ammonium, phosphate, and silicate ranged from 0.08 to 5.11 μM, 0.08 to 34.62 μM, 0.01 to 1.15 μM, and 1.46 to 31.79 μM, respectively. The nutrients were mainly supplied by precipitation and leaching from the bottom sediments in the fish culture farm area. It was not retained for a long duration because of the phytoplankton consumption and diffusion by water currents. The chlorophyll a concentration varied from 0.49 ㎍ l-1 to 7.39 ㎍ l-1. At that time, Chaetoceros debilis, C. pseudocurvisetus, and Pseudo-nitzschia delicatissima were rapidly proliferated and reached the level of 4.74 × 109 cells l-1. In particular, the lowest dissolved oxygen was recorded at 4.52 ㎍ l-1 at the bottom layer after bloom. Therefore, even though phytoplankton blooms in summer have frequently occurred in a fish culture farm area, the oxygen-deficient environments were not found in neither the surface nor bottom layers, which implied that the water masses might be well exchanged from the mouth of the northwest and southeast between Obi and Mireuk Island in the study area.