• Title/Summary/Keyword: leaching material

Search Result 231, Processing Time 0.024 seconds

Assessment of Environmental Contamination caused by the Stone-dust using Leaching Tests (용출실험에 의한 석분토의 지표환경 오염 평가)

  • Kang, Min-Ju;Lee, Pyeong-Koo;Youm, Seung-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.52-60
    • /
    • 2010
  • The stone-dust is an unavoidable by-product of aggregate production, which is produced about 0.8~1.0 million $m^3$ annually. The stone-dust is currently regarded as a hazard material on environment because it is classified as an industrial waste in the Waste Management Law of Korea. At present, the stone-dust is considered as a environmentally hazardous material, and is classified as an industrial waste according to the Waste Management Law of Korea. In this study, we assessed the heavy-metal contamination of the stone-dust on surrounding environments by various leaching tests. Leaching experiments (such as Korea Standard Leaching Procedure (KSLP), Soil Environment Preservation Act of Korea (SEPAK), Toxicity Characteristic Leaching Procedure (TCLP), and Synthetic Precipitation Leaching Procedure (SPLP)) show that very low heavy metals (As, Cd, Cu, Pb, Zn, Hg) and CN are leached out, or much less than each regulatory thresholds. The resuts of the leaching test with time in acidic solution (initial pH 5 and 3) indicate that pH-buffering minerals are present in the stone-dust. These results suggest that the stone-dust can not potentially affect adverse impact on surrounding environments such as surface water, groundwater and soil etc..

Leaching of Cobalt and Nickel from Metallic Mixtures by Inorganic and Organic Acid Solutions (코발트와 니켈 금속혼합물로부터 무기산 및 유기산에 의한 침출)

  • Moon, Hyun Seung;Song, Si Jeong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.53-60
    • /
    • 2021
  • Leaching experiments from single metal and metallic mixtures were conducted to develop a process for the recovery of cobalt, copper, and nickel in spent lithium ion batteries. Inorganic and organic acid solutions without oxidizing agents were employed. No copper was dissolved in the absence of an oxidizing agent in the leaching solutions. The leaching condition to completely dissolve single metal of cobalt and nickel was determined based on acid concentration, reaction temperature and time, and pulp density. The leaching condition to dissolve all of cobalt and nickel from the metallic mixtures was also obtained. Leaching of the metallic mixture with methanesulfonic acid led to selective dissolution of cobalt at low temperatures.

Solidification of uranium tailings using alkali-activated slag mixed with natural zeolite

  • Fulin Wang;Min Zhou;Cheng Chen;Zhengping Yuan;Xinyang Geng;Shijiao Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.523-529
    • /
    • 2023
  • Cemented uranium tailings backfill created from alkali-activated slag (CUTB) is an effective method of disposing of uranium tailings. Using some environmental functional minerals with ion exchange, adsorption, and solidification abilities as backfill modified materials may improve the leaching resistance of the CUTB. Natural zeolite, which has good ion exchange and adsorption characteristics, is selected as the backfill modified material, and it is added to the backfill materials with cementitious material proportions of 4%, 8%, 12%, and 16% to prepare CUTB mixtures with environmental functional minerals. After the addition of natural zeolite, the uniaxial compressive strength (UCS) of the CUTB decreases, but the leaching resistance of the CUTB increases. When the natural zeolite content is 12%, the UCS reaches the minimum value of 8.95 MPa, and the concentration of uranium in the leaching solution is 0.28-8.07 mg/L, the leaching rate R42 is 9.61×10-7 cm/d, and cumulative leaching fraction P42 is 8.53×10-4 cm, which shows that the alkali-activated slag cementitious material has a good curing effect on the CUTB, and the addition of environmental functional minerals helps to further improve the leaching resistance of the CUTB, but it reduces the UCS to an extent.

Chemical Composition and Leaching Characteristic of Coal Fly Ash (비산석탄회의 화학조성과 용출특성)

  • Rhee, Dong Seok;Kim, Jong Boo;Joo, Kwang Suk
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.394-399
    • /
    • 1998
  • This study was carried out to characterize the chemical composition and leaching properties of heavy metals in coal fly ash, which was generated from Korean electrical power utilities in several million tons per year. Comparion with respect to the leachability of heavy metals between the Korea standard leaching test (KSLT) and the American Environment Protection Agency (EPA) method 1311 (TCLP: Toxicity Chracteristic Leaching Procedure) was performed. The concentration of Ag, As, Ba, Cd, Cr, Cu, Pb, Se, Hg in the leacheate was determined by ICP-MS. The analytical result showed a significant difference of the leachability according to the characteristics of the leaching solution except Se, suggesting the necessity of improvement in the leaching test method that is currently implemented in Korea.

  • PDF

Leaching of Smelting Reduced Metallic Alloy of Spent Lithium Ion Batteries by the Mixture of Hydrochloric Acid and H2O2 (과산화수소를 혼합한 염산용액으로 폐리튬이온배터리의 용융환원된 금속합금의 침출)

  • Moon, Hyun Seung;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.25-31
    • /
    • 2021
  • Smelting reduction of spent lithium-ion batteries results in the production of metallic alloys in which reduced cobalt, nickel and copper coexist. In this study, we investigated the leaching of the metallic alloys containing the above three metals together with iron, manganese, and silicon. The mixture of hydrochloric acid and hydrogen peroxide as an oxidizing agent was employed, and the effect of the concentration thereof, the reaction time and temperature, and pulp density was investigated to accomplish the complete leaching of cobalt, nickel, and copper. The effect of the hydrogen peroxide concentration and pulp density on the leaching was prominent, compared to that of reaction time and temperature, especially in the range of 20 to 80℃. The complete leaching of the metals present in metallic alloys, except silicon, was accomplished using 2 M HCl and 5% H2O2 with a pulp density of 30 g/L for 150 min at 60℃.

Leachability of Zinc Borate-Modified Oriented Strandboard (OSB)

  • Lee, Sun-Young;Wu, Qinglin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.46-57
    • /
    • 2007
  • The leachability of boron in zinc borate (ZB)-modified oriented strandboard (OSB) from southern wood species was investigated in this study. The leaching experiments were conducted by exposing edge-sealed OSB samples under running water at $31^{\circ}C$ for 8, 24, 72, and 216 h. The results from leached samples were compared with those from the unleached controls. Boron leaching of the modified OSB occurred upon the initial water exposure, and the leaching rate decreased as the leaching time increased. Initial boric acid equivalent (BAE) level, wood species, and sample thickness swelling significantly influenced the leachability. There was no consistent effect of polyethylene glycol (PEG) on zinc borate leaching. The glue-line washing within OSB due to thickness swelling of the test samples under water and decomposition of the borate to form water-soluble boric acid were thought to be two possible causes for the observed leaching. The relationship between assayed BAE and leaching time followed a decaying exponential function for zinc borate treated OSB. From the boron/zinc ratio after each leaching period, boron element in ZB was more or less leachable. The material constant of the regression models allowed comparing the leachability of the modified OSB for various wood species. An unified leaching method for treated wood composite materials is needed.

Reusing the Liquid Fraction Generated from Leaching and Wet Torrefaction of Empty Fruit Bunch

  • Lee, Jae-Won;Choi, Jun-Ho;Im, Hyeon-Soo;Um, Min;Lee, Hyoung-Woo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.372-377
    • /
    • 2019
  • Leaching ($60^{\circ}C$, 5 min) and wet torrefaction ($200^{\circ}C$, 5 min) of empty fruit bunch (EFB) were carried out to improve the fuel properties; each liquid fraction was reused for leaching and wet torrefaction, respectively. In the leaching process, potassium was effectively removed because the leaching solution contained 707.5 ppm potassium. Inorganic compounds were accumulated in the leaching solution by increasing the reuse cycle of leaching solution. The major component of the leached biomass did not differ significantly from the raw material (p-value < 0.05). Inorganic compounds in the biomass were more effectively removed by sequential leaching and wet torrefaction (61.1%) than by only the leaching process (50.1%) at the beginning of the liquid fraction reuse. In the sequential leaching and wet torrefaction, the main hydrolysate component was xylose (2.36~4.17 g/L). This implied that hemicellulose was degraded during wet torrefaction. As in the leaching process, potassium was effectively removed and the concentration was accumulated by increasing the reuse cycle of wet torrefaction hydrolysates. There was no significant change in the chemical composition of wet torrefied biomass, which implied that fuel properties of biomass were constantly maintained by the reuse (four times) of the liquid fraction generated from leaching and wet torrefaction.

Selective Leaching of $LiCoO_2$in an Oxalic Acid Solution (Oxalic acid용액에서 $LiCoO_2$의 선택침출)

  • 이철경;양동효;김낙형
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.10-16
    • /
    • 2002
  • In the leaching of $LiCoO_2$with a strong acid such as sulfuric and nitric acid, an additional step was needed to recover cobalt and lithium separately from spent lithium ion batteries (LIBs). The leaching of $LiCoO_2$in an oxalic acid solution was investigated to recover cobalt selectively using a low solubility of cobalt oxalate at low pH. Leaching efficiency of 95% of lithium and less than 1% of cobalt were obtained when pure $LiCoO_2$powder was leached in 3M oxalic acid at $80^{\circ}C$ and 50 g/L pulpdensity. Under the above leaching conditions, complete dissolution of lithium was accomplished with mere 0.25% of cobalt in the solution when the cathodic active material collected from spent LIBs was employed. The lithium in the leaching solution can be recovered as a form of carbonate or hydroxide depending on the addition of $Na_2$$CO_3$or LiOH.

Soldering characteristics of Ag-Pd electrodes in relationship to differing particle size of LTCC substrate (LTCC 기판의 Particle Size 에 따른 Ag-Pd 전극의 Soldering 특성 변화)

  • 조현민;유명재;박종철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.130-133
    • /
    • 2002
  • Solder leaching resistance of the metal electrode is an important factor with regard to adhesion properties of ceramic substrate. In the Low Temperature Co-fired Ceramics (LTCC), Ag-Pd or Ag-Pt pastes are used instead of pure Ag paste to prevent leaching. Solder leaching behavior of the Ag-Pd paste in relation to LTCC raw material powder size was investigated. First fabrication of LTCC green tape with different particle size was done. LTCC substrates with Ag-Pd electrode were prepared using conventional multilayer ceramic process. Dipping test was performed to test solder leaching behavior of the electrode. Ag-Pd electrode on LTCC substrate with smaller particle size achieved higher solder leaching resistance.

  • PDF

Enhanced ion-exchange properties of clinoptilolite to reduce the leaching of nitrate in soil

  • Kabuba, John
    • Analytical Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • The leaching of nitrate from soil increases the concentration of elements, such as nitrogen, phosphorus, and potassium, in water, causing eutrophication. In this study, the feasibility of using clinoptilolite as an ion-exchange material to reduce nitrate leaching in soil was investigated. Soil samples were collected from three soil depths (0 - 30, 30 - 90, and 90 - 120 cm), and their sorption capacity was determined using batch experiments. The effects of contact time, initial concentration, adsorbent dosage, pH, and temperature on the removal of NO3- were investigated. The results showed that an initial concentration of 25 mg L-1, a contact time of 120 min, an adsorbent dosage of 5.0 g/100 mL, a pH of 3, and a temperature of 30 ℃ are favorable conditions. The kinetic results corresponded well with a pseudo-second-order rate equation. Intra-particle diffusion also played a significant role in the initial stage of the adsorption process. Thermodynamic studies revealed that the adsorption process is spontaneous, random, and endothermic. The results suggest that a modification of clinoptilolite effectively reduces the leaching of nitrate in soil.