• Title/Summary/Keyword: leaching experiment

Search Result 195, Processing Time 0.035 seconds

Polyvinylchloride Plasticized with Acetylated Monoglycerides Derived from Plant Oil (아세틸화 모노글리세라이드계 가소제 합성 및 PVC 가소성능에 관한 연구)

  • Lee, Sangjun;Yuk, Jeong-Suk;Kim, A-Ryeon;Choung, Ji Sun;Shin, Jihoon;Kim, Young-Wun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.42-49
    • /
    • 2017
  • To replace phthalate plasticizer for PVC, acetylated monoglyceride (AMG) plasticizers were prepared from plant oil and their plasticization effects were also investigated. Transesterification of coconut oil by glycerol followed by acetylation with acetic anhydride gave AMG-CoCo (Coco : Coconut Oil). In addition, AMG-GMO (GMO : Glycerol monooleate) and AMG-GMO-Epoxy were synthesized by acetylation and epoxidation with glycerol monooleate. It was found that the thermal stability of AMG plasticizers increased in the following order: AMG-GMO-Epoxy > AMG-GMO > AMG-CoCo and all three plasticizers were thermally more stable than those of common petroleum-based plasticizer DOP (Dioctyl phthalate). The tensile strain values of the PVC containing AMG compounds were ca. 770~810%, while tensile strength values were ca. 19~22 MPa, which were higher than those of PVC containing DOP. DMA (Dynamic Mechanical Analysis) results showed that the miscibility of AMG-GMO-Epoxy in PVC was excellent and the $T_g$ of PVC containing AMG-GMO-Epoxy at 50 phr decreased down to $24^{\circ}C$. Finally, the leaching experiment result showed that the weight loss values of PVC containing AMG-GMO and AMG-GMO-Epoxy at 50 phr were as low as 2 and 1%, respectively, indicating that they have high water migration resistance. The above findings suggested that AMG-GMO-Epoxy could be one of plant oil-based PVC plasticizers to replace DOP.

Correlation between Characteristics of SOD in Coastal Sewage and Predictive Factor (연안 저질 SOD의 특성과 유발 영향인자에 대한 상관관계)

  • Kim, Beom-Geun;Khirul, Md Akhte;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.596-604
    • /
    • 2019
  • This study conducted a sediment culture experiment to investigate the effects of sediment oxygen demand (SOD) and environmental factors on sediment and water quality. We installed a leaching tank in the laboratory, cultured it for 20 days, and analyzed the relationship between P and Fe in the sediment. As a result, the dissolved oxygen of the water layer decreased with time, while the oxidation-reduction potential of the sediment progressed in the negative direction to form an anaerobic reducing environment. The SOD was measured to be 0.05 mg/g at the initial stage of cultivation and increased to 0.09 mg/g on the 20th day, indicating the tendency of increasing consumption of oxygen by the sediment. The change is likely to have caused by oxygen consumption from biological-SOD, which is the decomposition of organic matter accumulated on the sediment surface due to the increase of chl-a, and chemical-SOD consumed when the metal-reducing product produced by the reduction reaction is reoxidized. The correlation between SOD and causality for sediment-extracted sediments was positive for Ex-P and Org-P and negative for Fe-P. The analysis of the microbial community in the sediment on the 20th day showed that anaerobic iron-reducing bacteria (FeRB) were the dominant species. Therefore, when the phosphate bonded to the iron oxide is separated by the reduction reaction, the phosphate is eluted into the water to increase the primary productivity. The reduced substance is reoxidized and contributes to the oxygen consumption of the sediment. The results of this study would be useful as the reference information to improve oxygen resin.

Recovery of Co and Ni from Strong Acidic Solution by Cyanex 301 (강산성용액에서 Cyanex 301에 의한 Co 및 Ni 회수 연구)

  • Cho, Yeon-Chul;Kim, Ki-Hun;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.28-35
    • /
    • 2021
  • An experiment was conducted to separate or recover Co and Ni using Cyanex 301 from process by-products and waste resources containing Co and Ni. To separate and recover Co and Ni from simulated leaching solutions, 10 v/v% Cyanex 301 was used as an extractant in this study; Li was not extracted. At equilibrium pH 1.5 and a phase ratio (A/O) of 1.0, 0.44% of Mg and 11.57% of Mn were extracted, and more than 99% of Co and Ni were extracted. McCabe-Thiele diagram analysis confirmed that more than 99.9% of Co and Ni could be extracted simultaneously through two-stage extraction with an extraction phase ratio (A/O) of 2. It was possible to extract Mg and Mn simultaneously through the scrubbing process. In the scrubbing process, more than 99% of Mg and 87% of Mn were scrubbed using 0.05 M of H2SO4, and 99.9% of Mg and more than 80% of Mn were scrubbed using 0.05 M of HCl. In the stripping process, 93% of Co and 5% of Ni were stripped selectively by 3.0 M of H2SO4. However, when 8.0 M of HCl was used as a stripping solution, more than 99.9% of Co and more than 90% of Ni were stripped simultaneously.

Effect of Phosphate Coated Slow Release Fertilizer on Yield of Directly Seeded Rice (벼 건답(乾畓) 직파(直播) 재배(栽培)시 인산(燐酸)입힌 완효성(緩效性) 비료(肥料)의 시용효과(施用效果))

  • Jung, Yeong-Sang;Lee, Ho-Jin;Ha, Sang-Keun;Cho, Byung-Ok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.108-113
    • /
    • 1997
  • A field experiment was conducted to evaluate effect of phosphate coated slow release fertilizer on the directly seeded rice. Odae byeo was seeded by drill under dry condition. The soil was a sandy clay loam soil located in the Experimental Farm of the Kangweon National University, Chuncheon, Kangweon-Do. The yield of rice from the urea applicated directly seeded field was 84.9% of the yield from the transplanted field, and showed no difference between split application treatments. The yield from the phosphate coated slow release fertilizer was the highest showing 110.7% of the yield from the urea application. The yield from the polymer coated slow release fertilizer was 90.4%. The yield from the organic fertilizer 400kg/10a treatment was 81.8% and was 94.8% from the organic fertilizer 600kg/10a treatment. In 1996 experiment, the yield from the phosphate coated slow release fertilizer was higher than the yield from the transplanted field. The $NO_3-N$ and $NH_4-N$ concentrations in soil solution at the depth of 15cm revealed that nitrogen leaching was the highest from the urea N40-0-30-30 treatment, and the lowest from the phosphate coated slow release fertilizer. The phosphorus concentration showed similar pattern. Therefore, use of phosphate coated slow release fertilizer increased rice yield and decreased loss of nitrogen and phosphorus loss.

  • PDF

COMPARATIVE EXPERIMENTAL STUDY ON MEASUREMENT OF ORAL TEMPERATURE WITH DIFFERENT KINDS OF CLINICAL THERMOMETERS -comparison of Oral Temperature and Oral Placement Time among Fahrenheit Glass Thermometer, Electric Thermometer, Yu II centigrade Glass Thermometer, and Kuk II centigrade Glass Thermometer- (각종 체온계의 구강체온측정에 관한 실험적 비교연구 -외제화씨 체온계, 전자체온계 및 국산 섭씨체온계에 의한 측정온도와 측정시간의 비교-)

  • 윤정숙
    • Journal of Korean Academy of Nursing
    • /
    • v.4 no.2
    • /
    • pp.93-106
    • /
    • 1974
  • The purposes of this study are to identify the necessity of utilization of electric thermometer, to determine the difference of clinical thermometers to reach maximum or optimum temperature, and to determine the length of time necessary for temperature taking, with Fahrenheit thermometer, electric thermometer, Yu Ⅱ centigrade thermometer, and Kuk ll centigrade thermometer. The first and second comparative Experiments were' conducted from August 25 through September 30, 1973. In the first experiment, Fahrenheit thermometer, which had been accurately teated two times, and electric thermometer have been utilized. These two kinds of thermometers were inserted simultaneously under the central area of the tongue and the mouth kept closed while thermometers were in place. All temperature readings were done at one minute interval until leaching-maximum temperature. These procedures were repeated one hundred times and the data were-analyzed statistically by means of the t-test. In the second experiment, Fahrenheit thermometer, which had been accurately tested two. times, Yu Ⅱ centigrade thermometer, and Kuk Ⅱ centigrade thermometer have been utilized. These three kinds of thermometers were inserted simultaneously under the central area of the. tongue and the mouth kept closed while thermometer were in place. All temperature readings were done at one minute interval until reaching maximum temperature. These procedures were. repeated one hundred times and the data were analyzed statistically by means of the F-ratio Under the eight hypotheses designed for this study, the findings obtained are as follows: 1. There were no significant differences in the maximum temperature between Fahrenheit thermometer and electric thermometer. The mean maximum temperature for Fahrenheit thermometers was 37.06℃ and for electric thermometer was 37.09℃. 2. The placement time to reach maximum temperature taken by Fahrenheit thermometer was significantly shorter than that by electric thermometer. The mean placement time for Fahrenheit thermometers was 4.04 minutes, for electric thermometer was 5.52 minutes. In the case of Fahrenheit thermometers, 45 to 77 percent after 3 to 5 minutes, over 90 Percent after 7 minutes, and 100 percent after 10 minutes, had reached optimum temperature. When the electric thermometer was used, 23 to 54 percent after 3 to 5 minutes, over 90 percent after 9 minutes, and 100 percent after 12 minutes, had reached optimum temperature. 5. There ware no significant differences in the maximum temperature among Fahrenheit thermometer, Yu Ⅱ centigrade thermometer, and Kuk Ⅱ centigrade thermometer. The mean maximum temperature for Fahrenheit thermometers was 36.67℃, for Yu Ⅱ centigrade thermometer, was 33.73℃, and for Kuk Ⅱ centigrade thermometers was 37.76℃. 6. There were no significant differences in placement time to reach maximum temperature among Fahrenheit thermometer, Yu Ⅱ centigrade Thermometer, and Kuk Ⅱ centigrade thermometer. The mean placement time (or Fahrenheit thermometers was 7.77 minutes, for Yu Ⅱ centigrade thermometers was 7.25 minutes, and Kuk Ⅱ centigrade thermometers was 7.25 minutes. In the case of Fahrenheit thermometers, 8 to 24 percent after 3 to 5 minutes, over 90 percent after 11 minutes, and 100 percent after 13 minutes, had reached maximum temperature. When the Yu Ⅱ centigrade thermometer was used, 10 to 27 percent after 3 to 5 minutes, over 90 percent after 11 minutes, an8 103 percent after 13 minutes, had reached maximum temperature. When the Kuk Ⅱ centigrade thermometer was used, 11 to 27 Percent after 3 to 5 minutes, over 90 percent after 11 minutes, and 100 percent after 12 minutes, had reached maximum temperature. 7. There were no significant differences in the optimum temperature(the maximum temperature minus 0.1℃) among fahrenheit thermometer, Yu Ⅱcentigrade thermometer, and Kuk Ⅱ centigrade thermometer. The mean optimum temperature for Fahrenheit thermometers was 36.60℃, for Yu Ⅱ centigrade thermometers was 36.69℃, and Kuk Ⅱ centigrade thermometers was 36.69℃. 8. There were no significant differences in placement time to reach optimum temperature among Fahrenheit thermometer, Yu Ⅱ centigrade thermometer, and Kuk Ⅱ centigrade thermometer The mean placement time for Fahrenheit thermometers was 5.70 minutes, for Yu Ⅱ centigrade thermometers was 5.54 minutes, and for Kuk Ⅱ centigrade thermometers was 5.28 minutes. In the case of Fahrenheit thermometers, 21 to 49 percent after 3 to 5 minutes, over 90 percent after 9 minutes, and 100 percent after 12 minutes, had reached optimum temperature. When the Yu Ⅱ centigrade thermometer was used, 23 to 51 percent after 3 to 5 minutes over 90 percent after 10 minutes, and 100 percent after 12 minutes, had reached optimum temperature. When the Kuk Ⅱ centigrade Thermometer was used, 23 to 57 Percent after 3 to 5 minutes, over 90 percent after 9 minutes, and 100 Precent after 11 minutes, had reached optimum temperature.

  • PDF

Physicochemical Characteristics of Tailings from the Various Types of Mineral Deposits (광상유형에 따른 광물찌꺼기의 물리화학적 특성)

  • Lee, Pyeong-Koo;Youm, Seung-Jun;Jung, Myung-Chae;Lee, Jin-Soo;Kwon, Hyun-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.235-248
    • /
    • 2010
  • To construct the standard methods for evaluation of physicochemical characteristics of tailings in Korea, specific gravity, paste pH, grain size, mineral compositions and heavy metal concentrations of total 26 tailings from 21 metallic mines were analyzed. Specific gravity of tailings ranged from 2.61 to 4.31 (avg. 3.04), and sand and silt grain were dominant in the tailings. Ranges of paste pH were 2.1-9.5 in tailings (7.1-9.2 at magmatic, skarn and hydrothermal replacement deposits and 2.1-9.5 at hydrothermal vein deposits). Additionally, hydrothermal vein deposits could be reclassified into three categories: (1) paste pH>7.0, (2) 4.0

Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities (비점오염 저감시설에 적용되는 여재의 흡착 및 탈착 능력 평가)

  • Moon, Soyeon;Hong, Jungsun;Choi, Jiyeon;Yu, Gigyung;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Urbanization causes many environmental, hydrological and ecological problems such as distortion of the natural water circulation system, increase in nonpoint source pollutants in stormwater runoff, degradation of surface water quality, and damage to the ecosystem. Due to the increase in impervious surface by urbanization, developed countries apply low impact development (LID) techniques as important alternatives to reduce the impacts of urbanization. In Korea, LID techniques were employed since 2012 in order to manage nonpoint source pollutants. LID technology is a technique for removing pollutants using a variety of physical, chemical and biological mechanisms in plants, microorganisms and filter media with the reduced effluence of stormwater runoff by mimicking natural water circulation system. These LID facilities are used in a variety of filter media, but an assessment has not been carried out for the comprehensive comparison evaluation of adsorption and desorption characteristics for the pollutant removal capacity. Therefore, this study was conducted to analyze the adsorption and desorption characteristics of various filter media used in the LID facilities such as sand, gravel, bioceramic, wood chips and bottom ash etc. in reducing heavy metals(Pb, Cu). In this study, the adsorption affinity for Pb in all filter media was higher than Cu. Pseudo second order equation and Langmuir-3 isotherm are more applicable in the adsorption kinetic model and adsorption isotherm model, respectively. As a result of the desorption experiment, the filter media does not exceed KSLT which is the hazardous substance leaching limit, showing the capability of the filter media in LID. The bioceramic and woodchip as filter medias were evaluated and exhibited excellent adsorption capacity for Pb.

A Study on Changes of Physico-Chemical Properties of Plow Layer Soil and its Response of Tobacco Growth under Poly Ethylene Film Mulching Condition. -2. Effect of Poly Ethylene Film Mulch on the Mineralization of Compound Fertilizer and Mobility of Mineralized Nutrients in the Plow Layer (연초피복재배(煙草被覆栽培)에서 작토층(作土層)의 이화학성(理化學性) 변화(變化)와 연초생장반응(煙草生長反應)에 관(關)한 연구(硏究) -2. 피복조건(被覆條件)이 시비(施肥)된 비료(肥料)의 무기화작용(無機化作用)과 무기화(無機化)된 양분(養分)의 작토층위별(作土層位別) 이동(移動)에 미치는 영향(影響))

  • Hong, Soon-Dal;Lee, Yun-Hwan;Kim, Jai-Joung;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.140-147
    • /
    • 1985
  • This experiment was conducted in the field to investigate the effects of mulched condition on nutrient's mineralization and its mobility as affected by environmental changes (soil moisture and soil temperature) in the plow layer. 1. Nitrogen mineralization was faster owing to the prevention of evaporation and the increase of soil temperature in the poly ethylene mulched plot. As a result, nitrate form of nitrogen was much earlier available for plant in mulched plot than in non mulched plot. 2. Available $P_2O_5$ content in the plow layer was kept highest in the fertilized zone (10-20 cm depth) regardless of difference between mulched and non mulched condition, and was nearly constant without showing difference between planting and non planting of tobacco due to the lower availability of phosphorus by tobacco. 3. Potassium applied in the plow layer was remained a large quantity until the latter growth stage resulting in the lower recovery of potassium by tobacco. 4. Mineralized nutrients such as $NH_4-N$, $NO_3-N$, and K in the plow layer of mulched plot were transported from the fertilized layer (10-20 cm depth) and accumulated to the surface layer (0-10 cm depth) as the growing time goes by, but those in non mulched plot were distributed to the deeper layer. 5. Mobility of available nutrients in the plow layer was If order as $NO_3-N$ $$\geq_-$$ $NH_4-N$ > K > available $P_2O_5$. 6. Leaching degree of mineralized nutrients in the mulched plot was much lower than in the non mulched plot.

  • PDF

Patterns of Leaching and Distribution of Cations in Reclaimed Soil according to Gypsum Incorporation Rate (석고 혼합량에 따른 간척지토양의 양이온 용탈 및 분포)

  • Ryu, Jin-Hee;Chung, Doug-Young;Hwang, Seon-Woong;Lee, Kyeng-Do;Lee, Sang-Bok;Choi, Weon-Young;Ha, Sang-Keun;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.596-601
    • /
    • 2010
  • Serious problems in reclaimed land for agriculture are high soil salinity and very poor vertical drainage. However, desalinization in these soils is very difficult. To identify the change of soil permeability by the gypsum incorporation in soils we observed elution patterns and salt distribution of the soil using soil columns packed with reclaimed saline soil with various rates of gypsum amendment. Saturated hydraulic conductivity ($K_{sat}$) of the top soil of reclaimed saline soils without gypsum incorporation was close 0 cm $hr^{-1}$ while $K_{sat}$ increased up to 0.3 cm $hr^{-1}$ with increasing amount of gypsum for 0.4% or more gypsum. Also $K_{sat}$ of the reclaimed saline soils for top soil was drastically increased to 1.0 cm $hr^{-1}$ or slightly greater after 141 hour's elution experiment. The cumulative amount of cation recovered in the effluent also increased in the order of gypsum incorporation rate 0.8% > 0.6% > 0.4 > 0.2%. Soil EC in soil columns decreased from initial 33.9 dS $m^{-1}$ to less than 0.4 dS $m^{-1}$ and exchangeable Ca 2+ increased by 32~140% according to gypsum incorporation rate.

Nitrification of the Soil Applied Urea for Winter Barley as Basal Dressing and Following Nitrate Release to the Environment (추파대맥(秋播大麥) 재배시 기비(基肥)로 시용(施用)한 요소(尿素)의 질산화(窒酸化)및 그에 따른 질산태질소(窒酸態窒素)의 환경(環境)에의 방출(放出))

  • Kim, Sok-Dong;Soh, Chang-Ho;Kwon, Yong-Woong;Lim, Ung-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.2
    • /
    • pp.112-120
    • /
    • 1993
  • The use of fertilizer N is essential for maximum economic yield of crops. Meanwhile, enrichment of $NO_3^-$in the environment has to be avoided. Winter barley crop has a short duration of growth before winter, but is used to receive N greater than 60 kg/ha at seeding. Experiments were performed to determine the quantitative aspect of the fate of soil applied urea N among the residual, leached, and uptaken by winter barley (cv. Olbori), and to evaluate the effect of soil temperature on nitrification. Four levels of urea (0, 40, 80, and 120 kg N/ha) was basal-dressed to Olbori. $NH_4^+$ appeared dominant in the soil until 40 days after seeding, whereas $NO_3^-$ did thereafter. Nitrification rate at $5^{\circ}C$ of soil temperature was 40 to 50% of that at $15^{\circ}C. Linear increases in the number of ammonia oxidizing and nitrite oxidizing bacteria of the soil was present as the level of urea fertilization was higher. Less than 60% of N applied at seeding was uptaken by winter barley until mid-March but 50% was lost from death of older barley leaves during overwintering. Thereby only 10% of the applied N remained in the barley in spring. Only 15% of the applied N was present in the rhizosphere. The 17 to 20% of the soil applied N leached out as $NO_3^-$ the rhizosphere. Nitrogen leaching during winter was estimated to be 16 and 20 kg/ha when the basal application level of urea fertilization was 80 and 120 kg/ha, respectively.

  • PDF