• Title/Summary/Keyword: leaching concentration

Search Result 436, Processing Time 0.03 seconds

Efficient Selective Recovery of Lithium from Waste LiFePO4 Cathode Materials using Low Concentration Sulfuric Solution and 2-step Leaching Method (저농도 황산 용액 및 2-스텝 침출 방법을 이용한 폐LiFePO4 양극재로부터 효율적인 리튬의 선택적 회수)

  • Dae-Weon Kim;Hee-Seon Kim
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • The recovery of valuable metals from waste lithium-based secondary batteries is very important in terms of efficiently utilizing earth's limited number of resources. Currently, the cathode material of a LiFePO4 battery, a type of battery which is widely used in automobiles, contains approximately 5% lithium. After use, the lithium in these batteries can be used again as a raw material for new batteries through lithium recycling. In this study, low-concentration sulfuric acid, a commonly used type of inorganic acid, was used to selectively leach the lithium contained in a waste LiFePO4 cathode material powder. In addition, in order to compare and analyze the leaching efficiency and separation efficiency of each component, the optimalleaching conditions were derived by applying a two-step leaching process with pulp density being used as a variable during leaching. When leaching with pulp density as a variable, it was confirmed that at a pulp density of 200 g/L, the separation efficiency was approximately 200 times higher than at other pulp densities because the iron and phosphorus components were hardly leached at this pulp density. Accordingly, the pulp density of 200 g/L was used tooptimize the leaching conditions for the selective leaching and recovery of lithium.

The Optimum Condition Analysis of Vanadium Solvent Extraction by Alamine336 from the Synthetic Vanadium Sulfate Solution. (황산바나듐 모의용액으로부터 Alamine336에 의한 바나듐 용매추출의 최적조건 연구)

  • Ahn, Jong-Gwan;Ahn, Jae-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.823-829
    • /
    • 2008
  • The solvent extraction process for the recovery of vanadium from leaching solution of SCR(selective catalytic reduction) spent catalyst was investigated by using Alamine336 as an extractant. The effects of experimental conditions, such as initial pH and concentration of sulfate ion, and ammonia concentration of stripping solution were studied. The extraction percentage of vanadium were increased with the increase of initial pH of leaching solution and decreased with the increase of sulfate ion. More than 99% of vanadium in leaching solution were extracted and stripped at the A/O ratio of 1.0 in 2 stages. On the basis of these results, an optimum solvent extraction process which vanadium was effectively recovered from SCR spent catalyst was proposed.

Leaching Kinetics of Yttrium Extraction from Coal Fly Ash using Sulfuric Acid

  • Kim, Jae-kwan;Park, Seok-un;Hong, Jun-seok;Shin, Dong-ik;Jeong, Jae-hyeok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • Leaching kinetics for extracting yttrium from the coal fly ash was investigated in the presence of sulfuric acid during extraction. The leaching kinetics of yttrium were conducted at reactant densities of 5~1,000 g coal fly ash per L of $1.0{\sim}10.0N\;H_2SO_4$, agitation speed of 250 rpm and temperature ranging from 30 to $90^{\circ}C$. As a result, the leaching kinetic model was determined in a two-step model based on the shrinking core model with spherical particles. The first step was proceeded by chemical reaction at ash surface, and the second step was proceeded by ash layer diffusion because the leaching conversion of yttrium by the first chemical reaction increases with increased the time irrelevant to the temperature whereas it increases with increased the leaching temperature. The activation energy of the first chemical leaching step was determined to be $1.163kJmol^{-1}$. After the first chemical reaction, the activation energy of ash layer diffusion leaching was derived to be $41.540kJmol^{-1}$. The optimum conditions for leaching the yttrium metal of 60 % were found to be the slurry density of 250 g fly ash per L of $H_2SO_4$, solvent concentration of $2.0N\;H_2SO_4$, second step leaching of temperatures of $30^{\circ}C$ for 3 hours and then $90^{\circ}C$ for 3 hours at agitation rate of 250 rpm.

Leaching Characteristics of Unregulated Heavy Metals in Specified Wastes (지정폐기물 중 미규제 중금속류의 용출 특성)

  • Jeon, Tae-Wan;Shin, Sun-Kyoung;Lee, Jeong-Ah;Kim, Hyoung-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.213-217
    • /
    • 2008
  • The objective of this research is to investigate the leaching characteristics of unregulated heavy metals such as Ni, Zn, Ba, Be, Sb, Se, V in specified waste. 108 waste samples which were taken from the representative facilities emitting hazardous substances, were analyzed. The rate of leaching of heavy metal was measured using an official test method. From the results, wastewater treatment sludge and dust contained much Ni, and Zn was detected in all samples. Dust and waste catalyst producted from petroleum-refining process tended to reveal V in high concentration. Ba, Be, Sb, Se showed low concentration, but require additional analyses of waste generated at different industries.

The Dissolution Efficiency of Gold Concentrate with Microwave-nitric Acid Leaching and the Recovery of Invisible Gold Using the Filter Paper (마이크로웨이브-질산용출에 의한 금 정광의 용해효율과 여과지를 이용한 비-가시성 금 회수)

  • Lee, Jong-Ju;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.595-604
    • /
    • 2019
  • The purpose of this study was simply to obtain gold through a microwave-nitric acid experiment of invisible gold concentrate with the use of filter paper. For the purpose, this study conducted a microwave-nitric acid leaching experiment and examined nitric acid concentration. As a result of the experiment, this study discovered that Fe, Te and Ag were completely leached in the leaching solution whereas Au was not determined in all of the nitric acid conditions. The leaching solution was filtered with three filter papers and then these filter papers were analyzed with SEM/EDS. As a result of the EDS analysis, Au was detected in all of the surface and cross-section of the 1st, 2nd and 3rd filter papers. As the three filter papers containing solid-residue were analysed in the lead-fire assay, gold particles were found in all of the nitric acid conditions. In the lead-fire assay, maximum gold(452.50g/t) was recovered when nitric acid concentration was 6M and microwave leaching time was 12mins.

Leaching Behavior of Nickel from Waste Multi-Layer Ceramic Capacitor (폐(廢) 적층형(積層形)세라믹콘덴서에 함유(含有)된 니켈의 침출거동(浸出擧動))

  • Kim, Eun-Young;Kim, Byung-Su;Kim, Min-Seuk;Jeong, Jin-Ki;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.14 no.5 s.67
    • /
    • pp.32-39
    • /
    • 2005
  • Leaching behavior of nickel contained in waste Multi-Layer Ceramic Capacitor (MLCC) was investigated using a batch reactor. The effects of acid type, acid concentration, leaching temperature, particle size, and reaction time on the extraction of nickel metal from waste MLCC were examined. As a result, 97% of nickel contained in waste MLCC was leached out in 30 min at the temperature of $90^{\circ}C$ under the condition of $HNO_3$ concentration 1N, solid/liquid ratio 5 g/L and particle size $-300/+180{\mu}m$. It was also found that a Jander equation was useful to fit well the leaching rate data. The rate of nickel leaching is controlled by pore diffusion in $BaTiO_3$ layer and has an activation energy of 37.6 kJ/mol (9.0 kcal/mol).

NaOH Decomposition and Hydrochloric Acid Leaching of Monazite by Hot Digestion Method (Hot digestion법(去)에 의(依)한 모나자이트정광(精鑛)의 알카리분해(分解) 및 염산침출(鹽酸浸出) 거동(擧動))

  • Kim, Sung-Don;Lee, Jin-Young;Kim, Chul-Joo;Yoon, Ho-Sung;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.70-76
    • /
    • 2010
  • It was to investigate the optimum leaching conditions for the NaOH hot digestion and hydrochloric acid leaching of Monazite. The optimum condition for NaOH hot digestion was that the concentration of NaOH/TREO mole ratio was 15, the temperature of decomposition $140^{\circ}C$, and reaction time 2 hrs. And the optimum condition for the hydrochloric acid leaching of NaOH hot digestion product was that the concentration of hydrochloric acid was 6N, leaching time 2 hrs and pulp density about 15%. The yield of rare earth oxide was above 90% on the above experimental condition.

Assessment of applicability on Solidification/Stabilization of Arsenic in contaminated Soil According to the Revised Korean Standard Leaching Test for Soil (개정 토양용출시험법에 따른 비소오염토양의 고형화/안정화 공법 국내 적용성 평가)

  • Hong, Seong-Hyeok;Park, Hye-Min;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Arsenic is one of the most abundant contaminant found in waste mine tailings and soil around refinery, Because of its carcinogenic property, the countries like United States of America and Europe have made stringent regulations which govern the concentration of arsenic in soil. The study focuses on solidification/stabilization for removal of arsenic from soil. Cement was used to solidify/stabilize the abandoned soil primarily contaminated with arsenic (up to 68.92 mg/kg) in and around refinery. Solidified/stabilized (s/s) forms in the range of cement contents 5-30 wt % were evaluated to determine the optimal binder content. Revised Korean standard leaching tests (KSLT), toxicity characteristic leaching procedures (TCLP), Old Korea standard leaching test and revised Korea standard leaching test were used for chemical characterization of the S/S forms. The addition of 10 % cement remarkably reduced the leachability of arsenic in contaminated soil. The concentration of As in leachate of TCLP, KSLT, and old KSLT for soil are below the standard. However that in leachate of revised KSLT is above the standard. Because of extraction fluid used in revised KSLT is very strong acid. It is arsenic in s/s with binder should be exhaustingly leached. Therefore S/S process would not be available for As treatment in soil in Korea.

Leaching of Smelting Reduced Metallic Alloy of Spent Lithium Ion Batteries by the Mixture of Hydrochloric Acid and H2O2 (과산화수소를 혼합한 염산용액으로 폐리튬이온배터리의 용융환원된 금속합금의 침출)

  • Moon, Hyun Seung;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.25-31
    • /
    • 2021
  • Smelting reduction of spent lithium-ion batteries results in the production of metallic alloys in which reduced cobalt, nickel and copper coexist. In this study, we investigated the leaching of the metallic alloys containing the above three metals together with iron, manganese, and silicon. The mixture of hydrochloric acid and hydrogen peroxide as an oxidizing agent was employed, and the effect of the concentration thereof, the reaction time and temperature, and pulp density was investigated to accomplish the complete leaching of cobalt, nickel, and copper. The effect of the hydrogen peroxide concentration and pulp density on the leaching was prominent, compared to that of reaction time and temperature, especially in the range of 20 to 80℃. The complete leaching of the metals present in metallic alloys, except silicon, was accomplished using 2 M HCl and 5% H2O2 with a pulp density of 30 g/L for 150 min at 60℃.

Mineralogical Phase Transform of Salt-roasted Concentrate and Enhancement of Gold Leaching by Chlorine-hypochlorite Solution (소금-소성정광에 대한 광물학적 상변화와 염소-차아염소산 용액을 이용한 금 용출 향상)

  • Kim, Bong-Ju;Cho, Kang-Hee;Oh, Su-Ji;Choi, Seoung-Hwan;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.9-18
    • /
    • 2013
  • In order to optimize the gold leaching process from refractory sulfide concentrate, a chlorine-hypochlorite solution with varying concentrations and temperatures were applied to salt-roasted concentrate. The concentrate consisted of pyrite, chalcopyrite, and galena, which were turned into hematite through air-roasting at $750^{\circ}C$. Also these concentrates were changed into hematite and nantokite (CuCl)) through salt (NaCl)-roasting at $750^{\circ}C$. The results of the gold leaching experiments showed that the best gold leaching parameters were obtained when the hydrochloric acid-sodium hypochlorite mix was at a ratio of 1 : 2, the added concentration was 1.0 M concentration, the pulp density was 1.0%, and the leaching was done at a $60^{\circ}C$ leaching temperature. The leaching rate for gold was much greater in the roasted concentrate than in the raw concentrate. The leaching rate was greater in the salt-roasted concentrate than in the plain roasted concentrate too. From XRD analysis, quartz was found in the salt-roasted concentrate and in the solid residue from the chlorine-hypochlorite leaching solution at $60^{\circ}C$.