• Title/Summary/Keyword: leaching concentration

Search Result 435, Processing Time 0.03 seconds

Crystallization of the Fly Ash from Municipal Incinerator (도시쓰레기 소각로 비산재 용융결정화 및 용출특성)

  • Lee, Hye-Mun;Kim, U-Hyeon;Lee, Jeong-Gyu
    • 연구논문집
    • /
    • s.31
    • /
    • pp.5-14
    • /
    • 2001
  • These days, interest in the leaching of hazardous heavy metals to consist of incinerator fly ash is increasing, because the heavy metals that leach from the incinerator fly ash pollute the soil and ground water. Therefore this study was undertaken to crystallize the fly ash and prevent the leaching of hazardous heavy metals from fly ash. The concentrations and the leaching concentration of hazardous heavy metals(Cd, Cr, Hg, Pb, Zn) in the law incinerator fly ash have been measured. The fly ash was melted with two kinds of flux($Na_2CO_3, CaCO_3$) and its add quantity(0, 1, 2, 3 wt%). The crystal structure of melting materials was analyzed by SEM(Scaning Electron Microscope) and X-RD(X-Ray Diffractometer). The leaching test of melting materials was undertaken. And the relation between crystallization of melting materials and flux and leaching concentration. These experiments indicate that the concentration and leaching concentration of heavy metals in incinerator fly ash was much higher than the regulatory standard for leachates in Korea and U.S.A and average concentration of heavy metals in soil. And the crystal structure was better.

  • PDF

Crystallization and high purification of aluminium chloride hexahydrate from kaolin leaching solution (고령토 침출용액으로부터 고순도 염화알루미늄 결정화 분리)

  • 김우식;장희동
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.584-594
    • /
    • 1996
  • For the separation and purification of aluminium chloride hexahydrate crystals from kaolin leaching solution the effects of crystallization conditions, such as crystallization temperature, concentration of aluminium chloride concentration in the leaching solutin and gas flow rate of HCl into the leaching solution, on purity of the aluminium chloride hexahydrate crystals were investigated. The supersaturation level of aluminium chloride in the leaching solution gave great influence on the purity of the crystals. When supersaturated concentration of the aluminium chloride in the leaching solution was generated in low level, the aluminium chloride hexahydrate crystals were produced with high purity ; that is, the crystals hving a low Fe-ion concentration. The supersaturation level of aluminium chloride in the leaching solution was mainly determined by crystallization temperature, concentrations of aluminium chloride and hydrochloric acid in the solution. However, in spite of changes of the above crystallization coditions, a needle shape morphology of aluminium chloride hexahydrate crystals did not modified. To measure hydrochloric acid concentration in the kaolin leaching solution, we applied the oxalate titration method, which was suggested by shank [9] and it was prove that this method could titrate hydrochloroic acid concentration in multi-component ionic solution such as kaolin leaching solution.

  • PDF

Nutrient Leaching from Leaf Litter of Cropland Agroforest Tree Species of Bangladesh

  • Hasanuzzaman, Md.;Hossain, Mahmood
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.208-217
    • /
    • 2014
  • Leaf litter is the main and quick source of organic matter and nutrient to the soil compared to other parts of litter. This study focused on the nutrients (N, P and K) leaching from leaf litter of Melia azadirachta, Azadirachta indica, Eucalyptus camaldulensis, Swietenia macrophylla, Mangifera indica, Zizyphus jujuba, Litchi chinensis, Albizia saman, Artocarpus heterophyllus, Acacia auriculiformis, Dalbergia sissoo and Khaya anthotheca as the common cropland agroforest tree species of Bangladesh. About (9 to 35) % of initial mass was lost, while Electric Conductivity (EC) and TDS (Total Dissolved Solid) of leaching water increased to (573 to 3,247) ${\mu}S/cm$ and (401 to 2,307) mg/l respectively after 192 hours of leaching process. Mass loss (%) of leaf litter, EC and TDS of leaching water showed significant (ANOVA, p<0.05) curvilinear relationship with leaching time. Initial concentration of NH4, PO4 and K in leaching water was found to increase significantly (p<0.05) up to 48/72 hours and then remained almost constant at later stages (48/72 to 192 hours). Mass loss of leaves; EC, TDS, $NH_4$, $PO_4$ and K in leaching water was varied also significantly (ANOVA, p<0.05) among the studied tree species. All the tree species showed similar pattern of nutrients (K>N>P) release during the leaching process. The highest $NH_4$ (4,097 ppm) and potassium (8,904 ppm) concentration was found for M. azadirachta while the highest $PO_4$ (1,331 ppm) concentration was found for E. camaldulensis in the leaching water. Among the studied tree species, M. azadirachta, A. indica, D. sissoo, E. camaldulensis and Z. jujuba was selected as the best tree species with respect to nutrient leaching.

Recovery of Tungsten from WC/Co Hardmetal Sludge by Alkaline Leaching Hydrometallurgy Process (WC/Co 초경합금 가공 슬러지로부터 알칼리침출 정련공정에 의한 W 회수)

  • Lee, Gil-Geun;Kwon, Ji-Eun
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.372-378
    • /
    • 2016
  • This study focuses on the development of an alkaline leaching hydrometallurgy process for the recovery of tungsten from WC/Co hardmetal sludge, and an examination of the effect of the process parameters on tungsten recovery. The alkaline leaching hydrometallurgy process has four stages, i.e., oxidation of the sludge, leaching of tungsten by NaOH, refinement of the leaching solution, and precipitation of tungsten. The WC/Co hardmetal sludge oxide consists of $WO_3$ and $CoWO_4$. The leaching of tungsten is most affected by the leaching temperature, followed by the NaOH concentration and the leaching time. About 99% of tungsten in the WC/Co hardmetal sludge is leached at temperatures above $90^{\circ}C$ and a NaOH concentration above 15%. For refinement of the leaching solution, pH control of the solution using HCl is more effective than the addition of $Na_2S{\cdot}9H_2O$. The tungsten is precipitated as high-purity $H_2WO_4{\cdot}H_2O$ by pH control using HCl. With decreasing pH of the solution, the tungsten recovery rate increases and then decrease. About 93% of tungsten in the WC/Co hardmetal sludge is recovered by the alkaline leaching hydrometallurgy process.

A Comparative Study for Leaching Characteristics of Specified By-Products due to Changes in Acid Neutralization Capacities (지정부산물의 산중화능력변화에 따른 용출특성 비교연구)

  • 이현경;박주양
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.206-209
    • /
    • 2001
  • This study presents the leaching characterization of heavy metals according to changes of pH by ANC test on slag produced in electric arc furnace, bottom ash produced in coal-fired plants and their recycling products. Availability test was performed to assess the fraction of the total concentration that under worst environmental conditions could become available for leaching. TCLP, KLT(Korea Leaching Test) and KLTS(Korea Leaching Test of Soil contamination) were carried out to compare the leaching capacity and to estimate the adequacy of regulatory leaching test. Results from regulatory leaching tests could be misleading because the variable ANC of wastes can lead to very different final leachate pHs. The final pH of the regulatory test is not the ambient pH in the disposal environment, the actual solubilities of contaminants in the field may be entirely different from those predicted by these regulatory tests. Leaching behaviour of by-products was changed by recycling processes, therefore acid neutralization capacity and availability of new products, not leaching concentration by one batch regulatory test, are necessary to determine the method of recycling.

  • PDF

A Study on the Decomposition of Litter and the Leaching of Mineral Nutrients in the Stands of Pinus rigida on Mt. Gwan-ak and Pseudosasa japonica on Odong-do (관악산의 리기다소나무림과 오동도의 이대림에서 낙엽의 분해와 무기양분의 세탈에 관한 연구)

  • Chang, Nam-Kee;Heui-Baik Kim;Jun-hi Yoo
    • The Korean Journal of Ecology
    • /
    • v.9 no.1
    • /
    • pp.51-58
    • /
    • 1986
  • The decay rates of organic matter were investigated and the leaching rates were determined from the concentration distribution of N,P,K, Ca and Na in the soil profile at Pinus rigida stand on Mt. Gwan-ak and at Pseudosasa japonica stand on Odong-do. In order to determine the leaching rates θo/W wazs substituted with KL in Towner's equation. Decay rates were 0.191 at Pinus stand on Mt. Gwan-ak and 0.234 at Pseudosasa stan don Odong-do. Concentration distributions of N,P, K and Na in soil profiles were corresponed with Towner's model curve. Leaching rates determined from concentration distributions were 0.086, 0.079, 0.041, 0.029, 0.096 on Mt. Gwan-ak and 0.080, 0.056, 0.051, 0.008, 0.028 on Odong-do. The soil of Pseudosasa stand showed on the whole lower leaching rates than that of Pinus stand. The soil of Pseudosasa stand showing higher decay rate and lower leaching rates contained more concentration of each nutrient than that of Pinus stand.

  • PDF

Preparation of Poly(lactic acid) Scaffolds by the Particulate Leaching (염 추출법에 의한 폴리락틱산 다공성 지지체 가공)

  • Lee, Ji-Hae;Lee, Jong-Rok;Kang, Ho-Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.324-331
    • /
    • 2003
  • Particulate leaching method for the preparation of porous PLLA scaffolds was carried out and especially, the effect of PLLA/$CHCl_3$ solution concentration on the salt leaching rate and the pore structure of PLLA scaffolds were considered. It was found that maintaining lower PLLA/$CHCl_3$ concentration and higher $CHCl_3$ evaporation temperature in the preparation of PLLA/NaCl mixtures resulted in the enhancement of salt leaching rat e and higher porosity. This is understood that those conditions could minimize the formation of dense PLLA layer on the surface of PLLA/NaCl mixture as well as introducing better porosity on the surface. Higher salt leaching temperature accelerated the salt leaching rate but it seems that there is no influence on the porosity of PLLA scaffolds.

Enhanced ion-exchange properties of clinoptilolite to reduce the leaching of nitrate in soil

  • Kabuba, John
    • Analytical Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • The leaching of nitrate from soil increases the concentration of elements, such as nitrogen, phosphorus, and potassium, in water, causing eutrophication. In this study, the feasibility of using clinoptilolite as an ion-exchange material to reduce nitrate leaching in soil was investigated. Soil samples were collected from three soil depths (0 - 30, 30 - 90, and 90 - 120 cm), and their sorption capacity was determined using batch experiments. The effects of contact time, initial concentration, adsorbent dosage, pH, and temperature on the removal of NO3- were investigated. The results showed that an initial concentration of 25 mg L-1, a contact time of 120 min, an adsorbent dosage of 5.0 g/100 mL, a pH of 3, and a temperature of 30 ℃ are favorable conditions. The kinetic results corresponded well with a pseudo-second-order rate equation. Intra-particle diffusion also played a significant role in the initial stage of the adsorption process. Thermodynamic studies revealed that the adsorption process is spontaneous, random, and endothermic. The results suggest that a modification of clinoptilolite effectively reduces the leaching of nitrate in soil.

Dissolution of Pb from the Complex Sulphide Concentrates Containing Galena and Arsenopyrite by Alkaline Oxidative Leaching (황비철광(黃砒鐵鑛)과 방연광(方鉛鑛)의 혼합황화광(混合黃化鑛)의 알카리산화(酸化)에 의한 Pb침출(浸出))

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.42-47
    • /
    • 2008
  • In this work, the dissolution behavior of Pb from the complex sulphide concentrates containing Galena and Arsenopyrite by alkaline oxidative leaching was studied. The influences of leaching temperature, oxygen partial pressure, leaching time and NaOH concentration of leaching solution were examined at the leaching conditions in the range of $100^{\circ}C{\sim}140^{\circ}C$ temperature, $40psi{\sim}100psi\;PO_2$ and $0.5M{\sim}2M$ NaOH concentration. The optimum result was obtained at the leaching condition of leaching temperature $120^{\circ}C$, 100psi $PO_2$, leaching time 30min. and 2M NaOH concentration of leaching solution.

Characteristics of Microwave Leaching for the Removal of Bi, As from the Sulfide Mineral Concentrate (황화광물정광으로부터 Bi, As 제거를 위한 마이크로웨이브 용출 특성)

  • On, Hyun-Sung;Togtokhmaa, B.;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.137-147
    • /
    • 2018
  • The aim of this study was to leach penalty elements, such as Bi and As, effectively through microwave leaching of a gold concentrate sample containing penalty elements with nitric acid solution. For this purpose, the time effect of microwave leaching, nitric acid concentration effect, and sample addition effect in a microwave were examined. The experiment, demonstrated that the leaching rate of penalty elements increased as microwave leaching time and nitric acid concentration increased and concentration addition decreased. When a microwave heating experiment was carried out on the concentrate and ore minerals, Bi was removed by as much as 90%, and the phase of arsenopyrite was transformed in the order of arsenopyrite (FeAsS), pyrrhotite (FeS), and hematite ($Fe_2O_3$). When the X-ray diffraction (XRD) analysis was carried out with solid residue, elemental sulfur and anglesite were identified. The intensity of the XRD peaks of elemental sulfur and anglesite increased, and the peaks were sharper when the microwave leaching time was 12 min instead of 1 min, the nitric acid concentration was 4 M in rather than 0.5 M, and the concentration addition was 30 g rather than 5 g. This was probably because more elemental sulfur and anglesite were generated in the leaching solution as the leaching efficiency increased. Bi can be leached as valuable elements in the leaching solution through microwave leaching processes while they are released to the environment through a microwave heating processes.