Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.5.372

Recovery of Tungsten from WC/Co Hardmetal Sludge by Alkaline Leaching Hydrometallurgy Process  

Lee, Gil-Geun (Department of Materials System Engineering, College of Engineering, Pukyong National University)
Kwon, Ji-Eun (Department of Materials System Engineering, College of Engineering, Pukyong National University)
Publication Information
Journal of Powder Materials / v.23, no.5, 2016 , pp. 372-378 More about this Journal
Abstract
This study focuses on the development of an alkaline leaching hydrometallurgy process for the recovery of tungsten from WC/Co hardmetal sludge, and an examination of the effect of the process parameters on tungsten recovery. The alkaline leaching hydrometallurgy process has four stages, i.e., oxidation of the sludge, leaching of tungsten by NaOH, refinement of the leaching solution, and precipitation of tungsten. The WC/Co hardmetal sludge oxide consists of $WO_3$ and $CoWO_4$. The leaching of tungsten is most affected by the leaching temperature, followed by the NaOH concentration and the leaching time. About 99% of tungsten in the WC/Co hardmetal sludge is leached at temperatures above $90^{\circ}C$ and a NaOH concentration above 15%. For refinement of the leaching solution, pH control of the solution using HCl is more effective than the addition of $Na_2S{\cdot}9H_2O$. The tungsten is precipitated as high-purity $H_2WO_4{\cdot}H_2O$ by pH control using HCl. With decreasing pH of the solution, the tungsten recovery rate increases and then decrease. About 93% of tungsten in the WC/Co hardmetal sludge is recovered by the alkaline leaching hydrometallurgy process.
Keywords
WC/Co hardmetal; sludge; recycling; hydrometallurgy; alkaline leaching;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C. S. Freemantle, N. Sacks, M. Topic and C. A. Pineda-Vargas: Int. J. Refractory Met. & Hard Mater., 44 (2014) 94.   DOI
2 L. S. Friedman, I. L. Friedman, K. C. Zagielski and L. A. Adams: U. S. patent No. 3184169 (1965).
3 G. G. Lee and G. H. Ha: J. Korean Powder Metall. Inst., 12 (2005) 112.   DOI
4 G. G. Lee and G. H. Ha: Met. Mater. Int., 22 (2016) 260.   DOI
5 R. Sasai, F. Inagaki, N. F. Gao and H. Itoh: J. of the Soc. Mater. Sci., 55 (2006) 254.   DOI
6 J. C. Lee, E. Y. Kim, J. H. Kim, W. Kim, B. S. Kim, and B. D. Pandey: Int. J. Refract. Met. Hard Mater., 29 (2011) 365.   DOI
7 H. K. Chang: Korea patent No. 1020070059108 (2007).
8 S. W. H. Yih and C. T. Wang: Tungsten Sources, Metallurgy, Properties and Applications, Plenum Press, New York (1979) 79.
9 K. Nose and T. Okabe: Met. & Tech., 81 (2011) 908.
10 K. Vadasdi: Int. J. Refractory Met. & Hard Mater., 13 (1995) 45.   DOI
11 J. C. Lee and G. H. Kim: Korea patent No. 1020100117087 (2010).
12 V. V. Malyshev and A. I. Hab: Mater. Sci., 40 (2004) 555.   DOI
13 V. V. Malyshev and A. I. Gab: Theorectical Foundations of Chem. Eng., 41 (2007) 436.   DOI
14 S. Wongsisa, P. Srichandr and N. Poolthong: Mater. Trans., 56 (2015) 70.   DOI
15 K. Srinivas, T. Sreenivas, R. Natarajan and N. P. H. Padmanabhan: Hydrometallurgy, 58 (2000) 43.   DOI
16 A. M. Amer: Hydrometallurgy, 58 (2000) 251.   DOI
17 M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press Ltd., New York (1966) 95.
18 E. Lassner and W. D. Schubert: Tungsten Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds, Bloating-Crushing Process Kluwer Academic Plenum Publishers, New York (1999) 377.
19 K. J. A. Brookes: World Directory and Handbook of Hardmetals and Hard Materials, sixth ed., International Carbide Data, Hertfordshire (1996) 9.
20 K. Halada: J. Jap. Soc. Powder & Powder Metall., 57 (2010) 87.   DOI