• Title/Summary/Keyword: layered site

Search Result 135, Processing Time 0.022 seconds

Site-Specific Ground Motions based on Empirical Green`s Function modified for the Path Effects in Layered Media (층상구조에서 지진파 전파경로를 고려하여 수정된 경험 Green 함수를 이용한 지반운동 모사)

  • 조남대;박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.19-27
    • /
    • 2001
  • Seismic parameters fur computation of ground motions in Southern Korea are obtained from recently recorded data, and site-independent regional and site-dependent local strong ground motions are predicted using efficient computational techniques. For the computation of ground motions, we devised an efficient procedure to compute site-independent $x_{q}$ and dependent $x_{s}$ values separately. The first step of this procedure is to use the coda normalization method far computation of site independent Q or corresponding $x_{q}$ value. The next step is the computation of $x_{s}$, values fur each site separately using the given $x_{q}$ value. For computation of ground motions the empirical Green's function (EGF) is modified to account fur the depth and distance variations of subevents on a finite fault plane using the theoritical Green's function. It is computed using wavenumber integration technique in layered media. The site dependent ground motions at seismic stations in southeastern local area were properly simulated using the modified empirical Green's function method in layered medium. The proposed method and procedures fur estimation of site dependent seismic parameters and ground motions could be efficiently used in the low and moderate seismicity regions.ons.s.ons.

  • PDF

Evaluation of Average Shear-wave Velocity Estimation Methods of Multi-layered Strata Considering Site Period (지반주기를 고려한 다층지반의 평균전단파속도 추정 방법 평가)

  • Kim, Dong-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.191-199
    • /
    • 2019
  • To calculate proper seismic design load and seismic design category, the exact site class for construction site is required. At present, the average shear-wave velocity for multi-layer soil deposits is calculated by the sum of shear-wave velocities without considering of vertical relationship of the strata. In this study, the transfer function for the multi-layered soil deposits was reviewed on the basis of the wave propagation theory. Also, the transfer function was accurately verified by the finite element model and the eigenvalue analysis. Three methods for site period estimation were evaluated. The sum of shear-wave velocities underestimated the average shear-wave velocities of 526 strata with large deviations. The equation of Mexican code overestimated the average shear-wave velocities. The equation of Japanese code well estimated the average shear-wave velocities with small deviation.

Analysis and Evaluation of the Liquefaction on Layered Soil (층상지반에 대한 액상화 평가방법 및 분석)

  • 이상훈;유광훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.28-35
    • /
    • 2001
  • Liquefaction potential on the specific site of nuclear power plant is analyzed and reviewed. The layered site fur this study consists of silt and sand. Based on the limited available soil data, maximum shear strength at critical locations using Seed & Idriss method and computer program SHAKE is calculated, and liquefaction potential is reviewed. Seismic input motion used fur the assessment of liquefaction is the artificial time history compatible with the US NRC regulatory Guider .60. Assessment results of the liquefaction are validated by analyzing to the other typical soil fecundations which can show the effects of foundation depth and soil data.

  • PDF

Double-layered collagen graft to the radial forearm free flap donor sites without skin graft

  • Park, Tae-Jun;Kim, Hong-Joon;Ahn, Kang-Min
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.45.1-45.8
    • /
    • 2015
  • Background: Radial forearm free flap is the most reliable flap for intraoral soft tissue reconstruction after cancer ablation surgery. However, unesthetic scar of the donor site and the need for a second donor site for skin graft are major disadvantages of the forearm flap. The purpose of this study was to report the clinical results of double-layered collagen graft to the donor site of the forearm free flap without skin graft. Methods: Twenty-two consecutive patients who underwent oral cancer ablation and forearm reconstruction between April 2010 and November 2013 were included in this study. Male to female ratio was 12:10, and average age was 61.0 years old (27-84). Double-layered collagen was grafted to the donor site of the forearm free flap and healed for secondary intention. Upper silicone had been trimmed at the periphery during secondary intention, and dry dressing was used. Postoperative scar healing and esthetic results and function were evaluated. Results: An average follow-up period was 34.9 months. The scar area was decreased to 63.9 % in average. The complete healing was obtained between 1.5 and 3 months according to the defect size. There was no functional defect or impairment 3 months after operation. All patients were satisfied with the esthetic results. Three patients died of recurred cancer. Conclusions: Double-layered collagen graft was successfully performed in this study. Without the thigh skin graft, patients had experienced less painful postoperative healing periods and discomfort.

1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake

  • Zhao, Mi;Yin, Houquan;Du, Xiuli;Liu, Jingbo;Liang, Lingyu
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.173-194
    • /
    • 2015
  • Site response analysis is an important topic in earthquake engineering. A time-domain numerical method called as one-dimensional (1D) finite element artificial boundary method is proposed to simulate the homogeneous plane elastic wave propagation in a layered half space subjected to the obliquely incident plane body wave. In this method, an exact artificial boundary condition combining the absorbing boundary condition with the inputting boundary condition is developed to model the wave absorption and input effects of the truncated half space under layer system. The spatially two-dimensional (2D) problem consisting of the layer system with the artificial boundary condition is transformed equivalently into a 1D one along the vertical direction according to Snell's law. The resulting 1D problem is solved by the finite element method with a new explicit time integration algorithm. The 1D finite element artificial boundary method is verified by analyzing two engineering sites in time domain and by comparing with the frequency-domain transfer matrix method with fast Fourier transform.

Seismic Response Analysis Considering the Site Effect in Two Dimensional Cases (부지효과를 고려한 2차원 평면상의 지진응답해석)

  • 김민규;임윤묵;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.83-90
    • /
    • 2001
  • The site effects of local geological conditions on seismic ground motion are performed using 2D numerical method. For the analysis, a numerical method far ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. In order to verify the seismic response analysis, the results are compared with those of commercial code. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis of the site effect in 2D problem.

  • PDF

Characteristic Changes of Layered Techniques in the Hussein Chalayan's Collections (후세인 샬라얀 컬렉션에 나타난 레이어드 기법의 변화 특성 연구)

  • Koo, Mi-Ji
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.9 no.3
    • /
    • pp.221-230
    • /
    • 2007
  • This research was focused on the changes of layered techniques in Hussein Chalayan's collections. For this purpose, the layered techniques in 134 works from Chalayan's collections, 97S/S to 06S/S, which were obtained from fashion magazines and fashion internet site, were analyzed and classified into 15 groups. Layered techniques in his works apparently expressed his philosophy about deconstruction. Multilayered feeling was given through using various techniques such as one layer clothing which was showed like multi-layered clothing. Others were multi-layer clothing which felt like one layer, breaking the stereotyped line of clothing into atypical construction and using various materials or constructive lines which made the optical feeling like one layer or multi-layer clothing, and so on. These layered techniques in Chalayan's collections were differentiated into several categories, such as techniques which were revealed in every collections, techniques which were differentiated from one another collections, techniques which were continuously showed through three collections for connection with each collection, techniques which were used only for Spring/Summer season, and techniques which were uniquely showed in early collection or recent collections.

  • PDF

SUTURE TECHNIQUE FOR SUCCESSFUL GUIDED BONE REGENERATION ; PRELIMINARY REPORT OF DOUBLE LAYERED SUTURE TECHNIQUE WITH SUBGINGIVAL SUTURE (성공적인 골유도재생술을 위한 봉합술 : 점막하 봉합법을 이용한 이중 봉합술의 예비 보고)

  • Kim, Young-Bin;Cho, Sung-Dae;Leem, Dae-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.1
    • /
    • pp.86-91
    • /
    • 2009
  • The success of implants essentially depends on a sufficient volume of healthy bone at the recipient site during implant placement. In patients who have the severe alveolar bone resorption or pneumatized maxillary sinus, it should be performed that bone regeneration procedure before implant placement. Development of barrier membrane makes it possible that predictable result of alveolar bone reconstruction. Many kind of materials used for barrier membrane technique are introduced, non-absorbable or absorbable membranes. But, when operation site was ruptured with membrane exposure, bacterias can be grow up at the bone graft site. Then morphology and migration of fibroblast will be changed. It works as a negative factor on healing process of bone graft site. In oral and maxillofacial department of Chonbuk national university dental hospital, we use variable suture technique like as subgingival suture, vertical mattress suture, simple interrupted suture, if need, tenting suture after GBR or block bone graft. Within these suture technique, wound healing was excellent without complication, so now we take a report of suture technique in reconstruction of alveolar bone surgery.

Obliquely incident earthquake for soil-structure interaction in layered half space

  • Zhao, Mi;Gao, Zhidong;Wang, Litao;Du, Xiuli;Huang, Jingqi;Li, Yang
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.573-588
    • /
    • 2017
  • The earthquake input is required when the soil-structure interaction (SSI) analysis is performed by the direct finite element method. In this paper, the earthquake is considered as the obliquely incident plane body wave arising from the truncated linearly elastic layered half space. An earthquake input method is developed for the time-domain three-dimensional SSI analysis. It consists of a new site response analysis method for free field and the viscous-spring artificial boundary condition for scattered field. The proposed earthquake input method can be implemented in the process of building finite element model of commercial software. It can result in the highly accurate solution by using a relatively small SSI model. The initial condition is considered for the nonlinear SSI analysis. The Daikai subway station is analyzed as an example. The effectiveness of the proposed earthquake input method is verified. The effect of the obliquely incident earthquake is studied.

Interpretation of Material Characteristics and Making Techniques for Lime-Soil Mixture on Tomb Barrier of Pyeongtaek Gungri Site in Joseon Dynasty (평택 궁리유적 조선시대 회곽묘의 재료학적 특성 및 제작기법 해석)

  • Kang, San Ha;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.49-65
    • /
    • 2018
  • The lime-soil mixture on tomb barrier (LSMB) is a type of tomb in Joseon Dynasty, which made with so-called 'Sammul' (three material compound) that mixture of lime, fine sand and yellow ocher. This study divided the tombs of the Gungri Site from Joseon Dynasty with layered wall and integrated wall according to the manufacturing types, and investigated on the basis of analysis to material characteristics and making techniques. Analytical samples were classified with lime-soil mixtures and soils, and interpreted the mixing characteristics of Sammul based on types of tomb barrier. The tomb barrier which is directly effect to control the inner environment was made with high content of lime. But the finishing or bottom layer were made with low content of lime. Overall the LSMB with integrated wall has higher content of lime and physical property than the LSMB with layered wall. The soil which was compounded as a Sammul and collected near the Gungri Site had similar with mineralogical and geochemical characteristics. Therefore, it is presumed that the fine sand and yellow ocher that made as a Sammul, were used with soil that was distributed around the site. Meanwhile, large scale limestone quarry is distributed near the site. Especially, Gungri Site has a possibility of material supply through water transport, due to the sea route from Asan bay is connected near the site. Thus, there is the possibility of transportation of lime materials from nearby quarry.