• Title/Summary/Keyword: layered silicates

Search Result 35, Processing Time 0.027 seconds

Investigation of Cure Kinetics and Storage Stability of the o-Cresol Novolac Epoxy Nanocomposites with Pre-intercalated Phenolic Hardeners

  • Hwang, Tae-Yong;Lee, Jae-Wook;Lee, Sang-Min;Nam, Gi-Joon
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • The cure kinetics of the epoxy-layered, silicate nanocomposites were studied by differential scanning calorimetry under isothermal and dynamic conditions. The materials used in this study were o-cresol novolac epoxy resin and phenol novolac hardener, with organically modified layered silicates. Various kinetic parameters, including the reaction order, activation energy, and kinetic rate constants, were investigated, and the storage stability of the epoxy-layered silicate nanocomposites was measured. To synthesize the epoxy-layered silicate nanocomposites, the phenolic hardener underwent pre-intercalation by layered silicate. From the cure kinetics analyses, the organically modified layered silicate decreased the activation energy during cure reaction in the epoxy/phenolic hardener system. In addition, the storage stability of the nanocomposite with the pre-intercalated phenolic hardener was significantly increased compared to that of the nanocomposite with direct mixing of epoxy, phenolic hardener, and layered silicate. This was due to the protective effect of the reaction between onium ions and epoxide groups.

Mechanistic examination of pre-exfoliating confinement of surface-functionalized nanobeads within layered silicates

  • Lee, Sang-Soo;Khvan, Svetlana;Kim, Jun-Kyung
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.190-190
    • /
    • 2006
  • The approach used in present work allows achieving highly exfoliated state of layered silicate s through confinement of the charged nanobeads within the gallery of swollen pristine clay. The latter is principally promoted by ion exchange that involves polar functional groups on the surface of nanobeads and sodium cation in the interlayer gallery of layered silicates. Surface functionality of the nanobeads plays crucial role in establishment of strong interactions with silicate surface, and eventually, dispersion of individual silicate nanoplatelets.

  • PDF

Preparation of Copolymers by Controlled Radical Polymerization and their Applications

  • Choi, Kil-Yeong;Kim, Yong-Seok;Han, Seung-San;Lee, Jae-Heung
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.95-96
    • /
    • 2006
  • Surface modification of clay minerals has become increasingly important for improving the practical applications of clays such as polymeric nanocomposites. We used the copolymer as modifiers having phenyl components, and successfully developed a route for the preparation of amine functionalized polymer based on oligostyrene and its block copolymers. The oligo(St-co-VBC)s with controlled molecular weight were synthesized via nitroxide mediated polymerization method. We also successfully prepared organophilic layered silicates whose surface is covered with styrenic copolymers. Through the analysis of chemical structure and morphology, we concluded that copolymers were very effective organic modifiers to change the surface characteristics of layered silicates.

  • PDF

Long-term AC Electrical Treeing Behaviors of Epoxy/Layered Silicate Nanocomposites Prepared by a 3-Roll Mill

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.85-88
    • /
    • 2012
  • Studies on the effects of layered silicate content on the AC electrical treeing and breakdown behaviors of epoxy/layered silicate nanocomposites were carried out in needle-plate electrode geometry. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that 1 wt% of the multilayered silicate was fully exfoliated into nano-sized monolayers in the epoxy matrix however, over 3 wt% of the silicate was in an intercalated state. When 1 wt% layered silicates were incorporated, an electrical tree was initiated in 439 min and propagated at a speed of 2.3 ${\mu}m$/min after applying 781.4 kV/mm, representing a decreased in starting initiation time by a factor of 11.0 and increase in propagation speed by a factor 8.2 in comparison with neat epoxy resin. These values were in great decline after the layered silicate content was increased to 3wt% which implies that the exfoliated silicate blocked the tree initiation and propagation processes effectively. However the effect was largely decreased in the intercalated state.

Effect of Organically Modified Layered Silicate on Thermal, Mechanical, and Electrical Properties of Epoxy-Based Nanocomposites

  • Park, Jae-Jun;Kwon, Soon-Seok;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.135-139
    • /
    • 2011
  • In an effort to develop new electrical insulation materials, four different kinds of organically modified layered silicate were incorporated into an epoxy matrix to prepare nanocomposites for electrical insulation. Five wt% of organically modified layered silicates were processed in a planetary centrifugal mixer in an epoxy matrix, and the thermal, mechanical, and electrical properties of the cured epoxy/layered silicate were investigated. The morphology of the nanoscale silicate dispersed in the epoxy matrix was observed using transmission electron microscopy, and the interlayer distance was measured by wide-angle X-ray scattering diffraction analysis.

Dielectric Properties of Epoxy/Organically Modified Layered Silicate Nanocomposites (에폭시/유기적으로 변경된 층상실리케이트가 충진 된 나노콤포지트의 유전특성)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.188-193
    • /
    • 2008
  • Epoxy/Organically Modified Layered Silicate Nanocomposites were prepared by dispersing synthetic layered silicate modified with alkyl ammonium ions. In the dispersing process, the organically modified layered silicate were mixed in epoxy resin with shearing, and aggregation of the silicate were removed by centrifugal separation after mixing epoxy resin and silicates. Micrographs taken by transmission electron microscopy(TEM) indicate that the nanocomposites have a mixed morphology including both parallel silicate layers and exfoliated silicate layers area, As the thermal properties, the glass transition temperature of the nanocomposites was shifted to a higher temperature($+6^{\circ}C$)than pure epoxy. Furthermore, dispersion of OMLS will prevented relative permittivity from increasing at a high temperature above the glass transition temperature.

Thermal Deintercalation of Ethylammonium-Aluminosilicate Intercalates with Various Layer Charges

  • Choy, Jin-Ho;Choi, Young-Joon;Han, Yang-Su
    • The Korean Journal of Ceramics
    • /
    • v.1 no.1
    • /
    • pp.40-44
    • /
    • 1995
  • Ethylammonium-layered aluminosilicates intercalates were prepared by ion exchange reaction between the layered silicates with different layer changes density of 0.32∼0.41 e per unit formula and ethylammonium chloride. A kinetic study on the thermal deintercalation of the ethylammonium-layered silicate intercalates was carried out by range of 350℃ to 480℃ (heating rate of 10℃/min). Based on the Ozawa's method, the activation energies of the thermal deintercalation reaction were estimated as 171.2∼133.0 kJ/mol, which increase linearly with the layer charge densities.

  • PDF

Synthesis of Nano-Clay and The Application for Nanocomposite (나노클레이의 합성 및 나노복합재로의 응용)

  • Jeong Soon-Yong;Jeong Eon-Il
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.122-130
    • /
    • 2005
  • Layered silicate was synthesized at hydrothermal condition from silica adding to various materials. Nano-clay was synthesized by intercaltion of various amine compounds into synthetic layered silicate. The products were analysed by XRD, SEM, and FT-IR in order to examine the condition of synthesis and intercalation. From the results, it was confirmed that kaolinite was synthesized from precipitated silica and gibbsite at $220^{\circ}C$ during 10 days, and hetorite was synthesized from silica sol at $100^{\circ}C$ during 48 h. Na-Magadiite was synthesized from silica gel at $150^{\circ}C$ during 72 h, and Na-kenyaite was synthesized from silica gel at $160^{\circ}C$ during 84 h. Nano-clay was prepared using synthetic layered silicate intercalated with various amine compounds. Kenyaite was easily intercalated by various organic compounds, and has the highest basal-spacing value among other layered silicates. Basal-spacing was changed according to the length of alkyl chain of amine comopounds. Polymer can be easily intercalated by dispersion with large space of interlayer. Finally, epoxy/nano-clay nanocomposite can be easily prepared.