• Title/Summary/Keyword: layered silicate

Search Result 99, Processing Time 0.027 seconds

Preparation of an Inorganic Scintillator Loaded Film for the Measurement of Surface Contamination and its Performance Test (표면오염 측정용 무기섬광 함침 필름의 제조 및 성능 평가)

  • 서범경;이근우;임난주;박진호;한명진
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2004
  • The smear media possible to sampling and radiation detection was prepared and evaluated for the surface contamination using indirect method. The films were made by impregnating Cerium Activated Yttrium Silicate (CAYS) in a polysulfone membrane. The membranes used solution as a dimethylformamide (DMF) and methylene chloride (MC), polysulfone as a polymer matrix and CAYS as a inorganic scintillator. The proximity membranes were prepared with single- and double-layered structure. The solidified methods were immersion to the nonsolvent bath such at water and ethanol and solvent evaporation. The measurement of the photon produced by interaction with radiation and inorganic scintillator used a photomultiflier tube (PMT), amplifier, and counter. In the comparison with the low background alpha/beta counter, the counter rate using inorganic scintillator proximity membrane for the $\^$14/C surface contamination was about 50%. Also. the $^3$H counting results revealed that the prepared membranes were efficient to monitor the surface contaminated with the low energy be-ray emitter nuclides.

Elastomer Nanocomposites(I) (엘라스토머 나노복합체(I))

  • Bang, Dae-Suk;Kye, Hyoung-San;Cho, Ur-Ryong;Min, Byung-Gak;Shin, Kyung-Chul
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.22-33
    • /
    • 2009
  • Recently, elastomer-nanocomposites reinforced with low volume fraction of nanofillers have attracted great interest due to their fascinating properties. The incorporation of nanofillers, such as, layered silicate clays, carbon nanotubes, nanofibers, calcium carbonate, metal oxides or silica nanoparticles into elastomers improves significantly their mechanical, thermal, dynamic mechanical, barrier properties, flame retardancy, etc. The properties of nanocomposites depend greatly on the chemistry of polymer matrices, nature of nanofillers, and the method in which they are prepared. The uniform dispersion of nanofillers in elastomer matrices is a general prerequisite for achieving desired mechanical and physical characteristics. In this paper, current developments in the field of elastomer nanocomposites reinforced with layered silicates, silica, carbon nanotubes, nanofibers and various other nanoparticles have been addressed.

Fabrication and characterization of silicon field emitter array with double gate dielectric (이중 게이트 절연막을 가지는 실리콘 전계방출 어레이 제작 및 특성)

  • 이진호;강성원;송윤호;박종문;조경의;이상윤;유형준
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.103-108
    • /
    • 1997
  • Silicon field emitter arrays (FEAs) have been fabricated by a novel method employing a two-step tip etch and a spin-on-glass (SOG) etch-back process using double layered thermal/tetraethylortho-silicate (TEOS) oxides as a gate dielectric. A partial etching was performed by coating a low viscous photo resist and $O_2$ plasma ashing on order to form the double layered gate dielectric. A small gate aperture with low gate leakage current was obtained by the novel process. The hight and the end radius of the fabricated emitter was about 1.1 $\mu\textrm{m}$ and less than 100$\AA$, respectively. The anode emission current from a 256 tips array was turned-on at a gate voltage of 40 V. Also, the gate current was less than 0.1% of the anode current.

  • PDF

Vapor Exposure Effect of a Casting Solution on the Embedding and Radioactive Detection of CAYS in Double-layered Polysulffne Film (방사능탐지용 CAYS 함침 이중구조 폴리설폰막의 형상 및 특성에 제막공정의 습도가 미치는 영향)

  • Han Myeong-Jin;Nam Suk-Tae;Lee Kune-Woo;Seo Bum-Kyoung
    • Membrane Journal
    • /
    • v.15 no.3
    • /
    • pp.198-205
    • /
    • 2005
  • Double-layered polymer films to assay the radioactive contamination were formulated using polysulfone (PSF) and cerium activated yttrium silicate (CAYS), consisting of a dense support layer and a CAYS-holding top layer prepared via the diffusion-induced phase inversion. As the vapor exposure process was omitted, the CAYS-holding layer showed a typical asymmetric structure, with CAYS being transfixed into the polymer network spread with large macropores. With the increase in vapor exposure time before immersion, morphology of the films transformed from asymmetric to sponge-like structures, with CAYS being localized in cellular structure. The border structure between the two layers reflects the phase inversion behavior of a cast solution during the coagulation. In the radioactive detection, the polymer phase in a film holding a sponge-like structure is so dense that the radionuclides, deposited on the film, could not filter through the phase, consequently resulting in the loss in the detection efficiency of the film.

AC Insulation Breakdown Strength and Mechanical properties of Various Types Epoxy-Nanocomposites (여러종류의 에폭시 나노콤포지트 교류절연파괴 강도 및 기계적특성에 대한 연구)

  • Kim, Jeung-Ho;Lee, Byeong-Ju;Yun, Jae-Hoan;Choi, Tae-Il;Choi, Tae-Jin;Bang, Byeong-Yoon;Park, Jae-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.224-224
    • /
    • 2009
  • 본 연구는 여러종류의 에폭시 나노콤포지트의 절연파괴 강도에 대한 와이블 특성을 연구하였다. 여러 종류 나노콤포지트는 나노입자 형상의 변화 즉, 층상실리케이트(Layered Silicate)와 구상 입자(SiO2)의 충진함량변화를 통한 절연파괴특성을 연구하였다. 나노+마이크로입자에대한 두 개의 체적비를 통한 멀티-나노복합물을 구현하였고, 그 절연파괴 특성의 결과와 기계적특성으로 굴곡강도특성을 Weibull Plot을 통하여 분석하였다. 순수한 나노콤포지트보다 멀티나노콤포지트가 기계적특성에서 월등하게 나타내었고, 절연파괴강도역시 형상파리미터가 대단히 큰 결과를 얻었다.

  • PDF

Solventless UV Curable Material for Low Cost System (저에너지 UV 경화형 무용제 소재 개발)

  • KIM, KWANGIN;LEE, JUHEON;LEE, HYUNJU;HAN, HAKSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • In this study, Poly-urethane acrylate (PUA) was synthesized by the reaction between Polycaprolactonetriol (PCLT) and Isophorone dissocyanate (IPDI) and hybridized with inorganic materials. Tetraethylortho silicate (TEOS) and nano clay (Closite 20A) were used as inorganic particles. For the hybridization of TEOS with PUA, sol-gel method is used, in which TEOS is made into spherical particle in the firsthand. In the case of Nano clay, hybridization is carried out through the dispersion as Nano clay has a layered structure. The solution of PUA hybrid was made into a film after UV curing and its thermo and electrical properties were measured. The experimental analysis and result demonstrate that the PUA hybrid shows an improved thermal properties and lower dielectric constant than that of the non-hybrid PUA. The trend of improved properties was different depending on structure of inorganic materials.

Fabrication of Pre-Exfoliated Clay Masterbatch via Exfoliation-Adsorption of Polystyrene Nanobeads

  • Khvan, Svetlana;Kim, Jun-Kyung;Lee, Sang-Soo
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2007
  • The approach studied in the present work produced an exfoliated state of clay layers via confinement of the charged nano-sized polystyrene (PS) beads within the gallery of swollen pristine clay. It was demonstrated that adsorption of the polymer nanobeads dramatically promotes expansion of the clay gallery. A comparative study of incorporation was conducted by employing organo-modified clay along with two different colloid polymer systems: electrostatically stabilized PS nanobeads and cationic monomer-grafted PS nanobeads. The mechanism of adsorption of the monomer-grafted polymer beads onto clay via cationic exchange between the alkyl ammonium group of the polymer nanobeads and the interlayer sodium cation of the layered silicate was verified by using several techniques. As distinct from the polymer nanobeads formed using conventional miniemulsion polymerization method, competitive adsorption of stabilizing surfactant molecules was be prevented by grafting the surface functional groups into the polymer chain, thereby supporting the observed effective adsorption of the polymer beads. The presence of surface functional groups that support the establishment of strong polymer-clay interactions was suggested to improve the compatibility of the clay with the polymer matrix and eventually play a crucial role in the performance of the final nanocomposites.

Optimal Dispersion Condition for Application of Power Ultrasonic on Epoxy-Layered Silicate Nanocomposites (에폭시-층상실리케이트 나노콤포지트 초음파 적용 최적 분산조건)

  • Park, Jae-Jun;Um, Ji-Yong;Kim, Ho-Kyoun;Yoon, Byung-Jae;Yun, Yo-Wook;Park, Gu-Hyun;Hwang, Byung-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.157-158
    • /
    • 2008
  • 친환경적인 분산기법으로 강력초음파 분산기법이 최근에 여러연구자들에 의해 적용되어 그 성과를 나타내고 있다. 에폭시-층상실리케이트 제조기법 중 가장 중요한 물성향상이 동반 상승되는 경우 분산처리를 통한 나노콤포지트 제조에 있다. 분산능력의 최적상태를 찾기 위해 초음파 적용시간을 4가지 적용시간을 달리하여 제조된 나노콤포지트 기계적, 전기적강도를 측정하여 와이블 확률분포 통계처리를 한 결과 전기적 절연파괴강도와 기계적 굴곡강도에서 최적의 분산상태를 얻을 수 있었다.

  • PDF

Thermal Conductivity Characteristics of Epoxy-Nanocomposites for Several Types Nano Layered Silicate (나노층상실리케이트 에폭시-나노콤포지트 열전도 특성연구)

  • Park, Jae-Jun;Cho, Hee-Su;Park, Young-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.193-195
    • /
    • 2008
  • 에폭시-층상실리케이트 나노콤포지트의 여러 가지 특성인 전기적, 기계적, 구조적 특성에 대해서 많은 연구가 진행되었고, 그에 대한 특성 향상을 가져왔다. 그러나 절연성능에 대한 평가는 우수하지만 열적특성 중열전도에 대한 영향은 그히 부족한 상태였다. 열적특성은 열적열화의 원인이 되어 신뢰성에 크게 영향을 준다. 여러종류 Organoclay(10A, 15A, 20A, 30B, 93A)의 에폭기-층상실리케이트 나노콤포지트 Tg 분석결과 10A의 경우 우수한 열적특성을 나타내었다. DNA 점탄성 및 기계적 손실측정에서도 10A의 경우 고온부($140^{\circ}C$) 탄성계수 및 기계적손실 피르가 가장작고, 고온으로 이동되어 발생된 경우로 열적 특성이 우수함을 알 수 있었다. 열전도 측정결과 강력초음파를 적용한 경우와 미적용의 경우 열전도측정으로 볼 때 전반적으로 초음파 적용 경우 열전도향상이 크게 증가된 결과를 얻었다. 향후 몰드 및 함침절연의 전력기기 적용시 유용한 자료로 이용이 가능하여, 더욱더 많은 연구가 필요할 것으로 생각된다.

  • PDF

Dispersion Properties of Epoxy-layered Silicate Nanocomposites Using Homogenizer (균질기를 이용한 에폭시-층상 실리케이트 나노콤포지트 분산 특성)

  • Lee, Sang-Keuk;Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.126-133
    • /
    • 2013
  • This paper presents a study on the dispersion effect of the X-Ray diffraction, glass transition and DMA properties of organic modifier clay/epoxy nanocomposites produced in a homogenizer. Several experiments were conducted including different types of dispersion condition with varying processing conditions such as homogenizer rotor speed and applied time of homogenizer. The effects of these variables on the dispersion properties of nanocomposites were then studied. In order to fully understand the experimental results, a X-ray diffraction, DSC and DMA were used to investigate the effect of above mentioned variables on microstructure and intercalation/exfoliation of organic modifier clay/epoxy nanocomposites. The results from this work could be used to determine the best processing condition to obtain appropriate levels of d-spacing, glasss transition temperature and storage modulus in organic modifier clay/epoxy nanocomposites.