• Title/Summary/Keyword: layered sandstone

Search Result 3, Processing Time 0.018 seconds

Study on acoustic emission fracture response and constitutive model of layered sandstone

  • Zhanping Song;Xiaojing Xu;Xiaoxu Tian;Tong Wang;Wanxue Song;Yun Cheng
    • Geomechanics and Engineering
    • /
    • v.39 no.2
    • /
    • pp.157-170
    • /
    • 2024
  • In the present study, the acoustic emission characteristics of hard sedimentary sandstone with varying bedding dip angles were examined through uniaxial compression tests using a rock mechanics creep apparatus combined with an acoustic emission system. The deformation and failure behavior of the sandstone was analyzed by correlating acoustic emission parameters with stress over time. A damage constitutive model was developed, incorporating cumulative acoustic emission ringing counts as a key parameter, with time acting as the intermediary. The findings indicate that, despite the differences in bedding dip angles, the stress-strain curves of the samples follow a similar pattern throughout the loading process, passing through four distinct phases: compaction, elastic deformation, yielding, and post-peak failure. The fracture patterns of the sandstone are influenced by the dip angle of the bedding. Acoustic emission parameters, including the ringing count, cumulative ringing count, and energy, align with these four stages of the stress-strain curve. During the compaction and elastic deformation phases, acoustic emissions remain in a quite state, with only brief spikes at points of rapid stress change. In the unstable fracture stage, acoustic emissions become highly active, while they return to a quite state in the post-fracture stage. The RA value of the acoustic emission displays a banded pattern as time progresses, with areas of dense clustering. When the stress curve declines, RA values enter an active period, mainly associated with the generation of shear cracks. Conversely, during periods of smooth stress progression, RA values remain in a quiet state, primarily linked to the formation of tensile cracks. The time-based damage constitutive model for layered sandstone effectively captures the entire process of rock fracture development.

Stress field interference of hydraulic fractures in layered formation

  • Zhu, Haiyan;Zhang, Xudong;Guo, Jianchun;Xu, Yaqin;Chen, Li;Yuan, Shuhang;Wang, Yonghui;Huang, Jingya
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.645-667
    • /
    • 2015
  • Single treatment and staged treatments in vertical wells are widely applied in sandstone and mudstone thin interbedded (SMTI) reservoir to stimulate the reservoir. The keys and difficulties of stimulating this category of formations are to avoid hydraulic fracture propagating through the interface between shale and sand as well as control the fracture height. In this paper, the cohesive zone method was utilized to build the 3-dimensional fracture dynamic propagation model in shale and sand interbedded formation based on the cohesive damage element. Staged treatments and single treatment were simulated by single fracture propagation model and double fractures propagation model respectively. Study on the changes of fracture vicinity stress field during propagation is to compare and analyze the parameters which influence the interfacial induced stresses between two different fracturing methods. As a result, we can prejudge how difficult it is that the fracture propagates along its height direction. The induced stress increases as the pumping rate increasing and it changes as a parabolic function of the fluid viscosity. The optimized pump rate is $4.8m^3/min$ and fluid viscosity is $0.1Pa{\cdot}s$ to avoid the over extending of hydraulic fracture in height direction. The simulation outcomes were applied in the field to optimize the treatment parameters and the staged treatments was suggested to get a better production than single treatment.

Three-dimensional magnetotelluric surveys for geothermal development in Pohang, Korea (포항지역 지열 개발을 위한 3 차원 자기지전류 탐사)

  • Lee, Tae-Jong;Song, Yoon-Ho;Uchida, Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • A three-dimensional (3D) magnetotelluric (MT) survey has been carried out to delineate subsurface structures and possible fractures, for development of low-temperature geothermal resources in Pohang, Korea. Quite good quality MT data could be obtained throughout the survey region by locating the remote reference in Kyushu, Japan, which is ${\sim}480\;km$ from the centre of the field site. 3D modelling and inversion are performed taking into account the sea effect in MT measurements near the seashore. The nearby sea in the Pohang area affects MT data at frequencies below $1\;Hz{\sim}0.2\;Hz$, depending on the distance from the seashore. The most severe sea effects were observed in the south-east parts of the survey area, closer to Youngil Bay. 3D inversion with and without the seawater constraint showed very similar results at shallow depths, roughly down to 2 km. At greater depths, however, a strong sea effect seems to form a fictitious conductive structure in ordinary 3D inversion, especially in the south-eastern part of the survey region. Comparison between drilling results and the resistivity profiles from inversions showed that five layered structures can be distinguished the subsurface beneath the target area. They are: (a) semi-consolidated mudstones with resistivity less than $10\;{\Omega}m$, which are ${\sim}300\;m$ thick in the northern part and ${\sim}600\;m$ thick in the southern part of the survey area; (b) occasional occurrence of trachybasalt and lapilli tuff within the mudstone layer has resistivity of a few tens of${\Omega}m$, (c) intrusive rhyolite ${\sim}400\;m$ thick has resistivity of several hundreds of ${\Omega}m$, (d) alternating sandstone and mudstone down to 1.5 km depth shows resistivity of ${\sim}100\;{\Omega}m$, (e) a conductive structure was found at a depth of ${\sim}3\;km$, but more geological and geophysical study should be carried out to identify this structure.