DOI QR코드

DOI QR Code

Study on acoustic emission fracture response and constitutive model of layered sandstone

  • Zhanping Song (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Xiaojing Xu (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Xiaoxu Tian (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Tong Wang (Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering) ;
  • Wanxue Song (School of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Yun Cheng (Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering)
  • Received : 2023.02.27
  • Accepted : 2024.09.30
  • Published : 2024.10.25

Abstract

In the present study, the acoustic emission characteristics of hard sedimentary sandstone with varying bedding dip angles were examined through uniaxial compression tests using a rock mechanics creep apparatus combined with an acoustic emission system. The deformation and failure behavior of the sandstone was analyzed by correlating acoustic emission parameters with stress over time. A damage constitutive model was developed, incorporating cumulative acoustic emission ringing counts as a key parameter, with time acting as the intermediary. The findings indicate that, despite the differences in bedding dip angles, the stress-strain curves of the samples follow a similar pattern throughout the loading process, passing through four distinct phases: compaction, elastic deformation, yielding, and post-peak failure. The fracture patterns of the sandstone are influenced by the dip angle of the bedding. Acoustic emission parameters, including the ringing count, cumulative ringing count, and energy, align with these four stages of the stress-strain curve. During the compaction and elastic deformation phases, acoustic emissions remain in a quite state, with only brief spikes at points of rapid stress change. In the unstable fracture stage, acoustic emissions become highly active, while they return to a quite state in the post-fracture stage. The RA value of the acoustic emission displays a banded pattern as time progresses, with areas of dense clustering. When the stress curve declines, RA values enter an active period, mainly associated with the generation of shear cracks. Conversely, during periods of smooth stress progression, RA values remain in a quiet state, primarily linked to the formation of tensile cracks. The time-based damage constitutive model for layered sandstone effectively captures the entire process of rock fracture development.

Keywords

Acknowledgement

The authors deeply appreciate support from the National Natural Science Foundation(52178393) and the Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan (Grant No. 2020TD005).

References

  1. Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49(2013), 206-225. https://doi.org/10.1016/j.compgeo.2012.10.012.
  2. Carpinteri, A., Lacidogna, G. and Pugno, N. (2007), "Structural damage diagnosis and life-time assessment by acoustic emission monitoring", Eng. Fract. Mech., 74(1-2), 273-289. https://doi.org/10.1016/j.engfracmech.2006.01.036.
  3. Cheng, Y., Song, Z.P., Liu, Z., Tian X., Qian, W., Lu, X. and Yang, T. (2024), "Micro-cracking morphology and dynamic fracturing mechanism of natural brittle sandstone containing layer structure under compression", Constr. Build. Mater., 425(2024)136051. https://doi.org/10.1016/j.conbuildmat.2024.136051.
  4. Cheng, Y., Song, Z.P., Song, W.X., Li, S.G., Yang, T.T., Zhang, Z.K., Wang, T., and Wang, K.S. (2021), "Strain performance and fracture response characteristics of hard rock under cyclic loading", Geomech. Eng., 26(6), 551-563. https://doi.org/10.12989/gae.2021.26.6.551.
  5. Cheng, Y., Song, Z.P., Yang, T.T., Han, J.J., Wang, B.W. and Zhang, Z.K. (2022), " Investigating the aging damage evolution characteristics of layered hard sandstone using digital image correlation", Constr. Build. Mater., 353(2022), 128838. https://doi.org/10.1016/j.conbuildmat.2022.128838.
  6. Chu, C.Q., Wu, S.C., Zhang, S.H., Guo, P. and Zhang, M. (2020), "Mechanical behavior anisotropy and fracture characteristics of bedded sandstone", J. Central South Univ. (Science and Technology), 51(8), 2232-2246. https://doi.org/10.11817/j.issn.1672-7207.2020.08.018.
  7. Dai, Q.L., Ng, K., Zhou, J., Kreiger, E.L. and Ahlborn, T.M. (2012), "Damage investigation of single-edge notched beam tests with normal strength concrete and ultra high performance concrete specimens using acoustic emission techniques", Constr. Build. Mater., 31(2012), 231-242. https://doi.org/10.1016/j.conbuildmat.2011.12.080.
  8. Dou, L.T., Yang, K. and Chi, X.L. (2021), "Fracture behavior and acoustic emission characteristics of sandstone samples with inclined precracks", Int. J. Coal Sci. Technol., 8(1), 77-87. https://doi.org/10.1007/s40789-020-00344-x.
  9. Geng, J.S., Sun, Q., Zhang, Y.C., Cao, L.W. and Zhang, W.Q. (2017), "Studying the dynamic damage failure of concrete based on acoustic emission", Constr. Build. Mater., 149(2017), 9-16. https://doi.org/10.1016/j.conbuildmat.2017.05.054.
  10. Gou, P., Wu, S.C., Zhang, G. nd Chu, C.Q. (2021), "Effects of thermally-induced cracks on acoustic emission characteristics of granite under tensile conditions", Int. J. Rock Mech. Min. Sci., 144(2021), 104820. https://doi.org/10.1016/j.ijrmms.2021.104820.
  11. Kim, J.S., Lee, K.S., Cho, W.J., Choi, H.J. and Cho, G.C. (2013), "A combined method of Wigner-Ville distribution with a theoretical model for acoustic emission source location in a dispersive media", KSCE J. Civil Eng., 17(6), 1284-1292. https://doi.org/10.1007/s12205-013-0418-6.
  12. Kim, J.S., Lee, K.S., Cho, W.J., Choi, H.J. and Cho, G.C. (2015), "A comparative evaluation of stress-strain and acoustic emission methods for quantitative damage assessment of brittle rock", Rock Mech. Rock Eng., 48(2), 495-508. https://doi.org/10.1007/s00603-014-0590-0.
  13. Kim, J.S., Kim, G.Y., Baik, M.H. and Cho, G.C. (2019), "A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission", Geomech. Eng., 18(1), 11-20. https://doi.org/10.12989/gae.2019.18.1.011.
  14. Kong, B., Wang, E.Y., Li, Z.H., Wang, X.R., Liu, J. and Li, N. (2016), "Fracture mechanical behavior of sandstone subjected to high-temperature treatment and its acoustic emission characteristics under uniaxial compression conditions", Rock Mech. Rock Eng., 49(12), 4911-4918. https://doi.org/10.1007/s00603-016-1011-3.
  15. Li, S.C., Xu, X.J., Liu, Z.Y., Yang, W.M., Liu, B., Zhang, X., Wang, Z.C., Nie, L.C., Li, J.L. and Xu, L. (2014), "Electrical resistivity and acoustic emission response characteristics and damage evolution of sandstone during whole process of uniaxial compression", Chinese J. Rock Mech. Eng., 33(1), 1-23. https://doi.org/10.13722/j.cnki.jrme.2014.01.002.
  16. Liu, Z., Yao, Q.G., Kong, B. and Yin, J.L. (2020), "Macro-micro mechanical properties of building sandstone under different thermal damage conditions and thermal stability evaluation using acoustic emission technology", Constr. Build. Mater., 246(2020), 118485. https://doi.org/10.1016/j.conbuildmat.2020.118485.
  17. Lv, H., Peng, K., Shang, X.Y., Wang, Y.Q. and Liu, Z.P. (2022), "Experimental research on the mechanical and acoustic emission properties of layered sandstone during tensile failure", Theor. Appl. Fract. Mech., ,118(2022), 103225. https://doi.org/10.1016/j.tafmec.2021.103225.
  18. Meng, Q.B., Liu, J.F., Xie, L.X., Pu, H., Yang, Y.G., Huang, B.X. and Qian, W. (2022), "Experimental mechanical strength and deformation characteristics of deep damaged-fractured rock", Bull. Eng. Geol. Environ., 81(32), 1-27. https://doi.org/10.1007/s10064-021-02529-3.
  19. Mohammadi, H. and Pietruszczak, S. (2019), "Description of damage process in fractured rocks", Bull. Eng. Geol. Environ., 113(2019), 295-302. https://doi.org/10.1016/j.ijrmms.2018.12.003.
  20. Sirdesai, N.N., Gupta, T., Singh, T.N. and Ranjith, P.G. (2018), "Studying the acoustic emission response of an Indian monumental sandstone under varying temperatures and strains", Constr. Build. Mater., 168(2018), 346-361. https://doi.org/10.1016/j.conbuildmat.2018.02.180.
  21. Song, Y.M., Zhao, K.J. and Yang, X.B. (2021), "Study on AE characteristics of red sandstone samples with prefabricated crack under uniaxial compression", J. Saf. Sci. Technol., 17(11), 131-136. https://doi.org/10.11731/j.issn.1673-193x.2021.11.020.
  22. Song, Z.P., Cheng, Y., Yang, T.T., Huo, R.K., Wang, J.B., Liu, X.R. and Zhou, G.N. (2019), "Analysis of compression failure and acoustic emission characteristics of limestone under permeability-stress coupling", J. China Coal Soc., 44(9), 2751-2759. https://doi.org/10.13225/j.cnki.jccs.018.1425.
  23. Song, Z.P., Cheng, Y., Tian, X.X., Wang, J.B. and Yang, T.T. (2020), "Mechanical properties of limestone from Maixi tunnel under hydro-mechanical coupling", Arabian J. Geosci., 13(9), 1-11. https://doi.org/10.1007/s12517-020-05373-z.
  24. Song, Z.P., Song, W.X., Cheng, Y., Yang, T.T., Wang, T. and Wang, K.S. (2022a), "Investigation on strain characteristics and fatigue constitutive model of limestone under osmotic pressure and cyclic disturbance coupling", KSCE J. Civil Eng., 26(4), 1740-1753. https://doi.org/10.1007/s12205-022-1416-3.
  25. Song, Z.P., Wang, T., Wang, J.B., Xiao, K.H. and Yang, T.T. (2022b), "Uniaxial compression mechanical properties and damage constitutive model of limestone under osmotic pressure", Int. J. Damage Mech., 31(4), 557-581. https://doi.org/10.1177/10567895211045430.
  26. Su, C.D., Zhai, X.X., Li, B.F. and Li, H.Q. (2011), "Experimental study of the characteristics of acoustic emission for sandstone specimens under uniaxial and triaxial compression tests", J. Min. Saf. Eng., 28(2), 225-230.
  27. Wang, C.Y., Chang, X.K. and Du, X.Y. (2020), "Analysis on dominantt-frequency characteristics of acoustic emission in sandstone uniaxial compression failure", Chinese J. Undergr. Sp. Eng., 16(2), 451-462.
  28. Wang, J., Xie, L.Z., Xie, H.P., Li, R., He, B., Li, C.B., Yang, Z.P. and Gao, C. (2016), "Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests", J. Nat. Gas Sci. Eng., 36(2016), 1120-1129. https://doi.org/10.1016/j.jngse.2016.03.046.
  29. Wang, T., Song, Z.P., Yang, J.Y., Wang, J.B. and Zhang, X.G. (2019), "Experimental research on dynamic response of red sandstone soil under impact loads", Geomech. Eng., 17(4), 393-403. https://doi.org/10.12989/gae.2019.17.4.393.
  30. Wang, Y., Zhang, B., Li, B. and Li, C.H. (2021), "A strain-based fatigue damage model for naturally fractured marble subjected to freeze-thaw and uniaxial cyclic loads", Int. J. Damage Mech., 30(10), 1594-1616. https://doi.org/10.1177/10567895211021629.
  31. Wasantha, P.L.P., Ranjith, P.G. and Shao, S.S. (2014), "Energy monitoring and analysis during deformation of bedded-sandtone: Use of acoustic emission", Ultrasonics, 54(2014), 217-226. https://doi.org/10.1016/j.ultras.2013.06.015.
  32. Wu, X.Z., Liu, J.W., Liu, X.X., Zhao, K. and Zhang, Y.B. (2015), "Study on the coupled relationship between AE accumulative ring-down count and damage constitutive model of rock", J. Min. Saf. Eng., 32(1), 28-34+41. https://doi.org/10.13545/j.cnki.jmse.2015.01.005.
  33. Xie, Z.L., Yan, X.Q., Fu, M.F. and Fan, B.S. (2012), "Study on the coupled relationship between AE accumulative ring-down count and damage constitutive model of rock", Appl. Acoust., 32(6), 462-467.
  34. Yang, S.Q. and Jing, H.W. (2013), "Evaluation on strength and deformation behavior of red sandstone under simple and complex loading paths", Eng. Geol., 164(2013), 1-17. https://doi.org/10.1016/j.enggeo.2013.06.010.
  35. Yang, W.J., Xie, Q., Ban, Y.X., He, X.B. and Peng, G.Y. (2021), "The acoustic emission characteristics and damage constitutive model of sandstone under variable loading rates", Chinese J. Undergr. Sp. Eng., 17(1), 71-79.
  36. Yang, X.B., Han, X.X., Liu, L.E., Zhang, Z.P. and Wang, X.Y. (2018), "Experimental study on the acoustic emission characteristics of non-uniform deformation evolution of granite under cyclic loading and unloading test", Rock Soil Mech., 39(8), 2732-2739. https://doi.org/10.16285/j.rsm.2018.0048.
  37. Yang, Z.Q., Deng, W.X., Zhang, P.H., Wang, P.T., Zhang, T.W. and Yang, T.H. (2016), "The influence of bedding angle on acoustic emission characteristics in biotite granulite", J. Min. Saf. Eng., 33(3), 521-527. https://doi.org/10.13545/j.cnki.jmse.2016.03.022.
  38. Zhang, H., Jin, C.J., Wang, L., Pan, L.Y., Liu, X.Y. and Ji, S.S. (2022), "Research on dynamic splitting damage characteristics and constitutive model of basalt fiber reinforced concrete based on acoustic emission", Constr. Build. Mater., 319(2022), 126018. https://doi.org/10.1016/j.conbuildmat.2021.126018.
  39. Zhang, Z.K., Song, Z.P., Cheng, Y., Huo, R.K., Song, W.X., Wang, K.S., Wang, T., Yang, T.T. and Liu, W. (2022), "Acoustic emission characteristics and fracture response behavior of hard rock-like material under influence of loading rate", Coal Geol. Explor., 44(9), 2751-2759. https://doi.org/10.12363/issn.1001-1986.21.08.0418.