• Title/Summary/Keyword: layered halfspace

Search Result 6, Processing Time 0.023 seconds

Cuboidal Infinite Elements for Soil-Structure-Interaction Analysis in Multi-Layered Half-Space (3차원 지반-구조물 상호작용해석을 위한 입방형 무한요소)

  • Seo, Choon-Gyo;Yun, Chung-Bang;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.39-50
    • /
    • 2007
  • This paper presents 3D infinite elements for the elastodynamic problem with multi-layered half-space. Five different types of infinite elements are formulated by using approximate expressions of multiple wave components for the wave function in multi-layered soil media. They are horizontal, horizontal-corner, vortical, vertical-corner and vertical-horizontal-comer infinite elements. The elements can effectively be used for simulating wane radiation problems with multiple wave components. Numerical example analyses are presented for rigid disk, square footings and embedded footing on homogeneous and layered half-space. The numerical results show the effectiveness of the proposed infinite elements.

Determination of Shear Wave Velocity Profiles of Natural Soils and Pavement Systems Using Surface Wave Technique (표면파 기법을 이용한 자연지반 및 포장지반의 전단파 속도 분포 추정에 관한 연구)

  • Woo, Je Yoon;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.49-57
    • /
    • 1988
  • A new analytical inversion technique is developed to determine the shear wave velocity profiles of natural soils and pavement systems from the dispersion curves of Rayleigh waves. Haskell's theory on the dispersion of the surface waves in multi-layered elastic solids is utilized. A frequency-unlimited dispersion equation is developed by use of the delta matrix technique. Rigid halfspace is assumed at the depth of the one wavelength of Rayleigh waves. Computer program is coded and validity of the technique is verified through the numerical model tests.

  • PDF

Development of 3-D Dynamic Infinite Elements for 3D Soil-Structure Interaction Analysis in Multi-layered Halfspaces (적층 반무한지반에서 3차원 지반-구조물 상호작용해석을 위한 동적 무한요소의 개발)

  • 서춘교;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.304-311
    • /
    • 2004
  • In this paper, three dimensional dynamic infinite elements are developed for the soil-structure interaction analysis in multi-layered halfspace. For the efficient discretization of 3-D for field regions, five types of dynamic infinite elements are developed. They are the horizontal, vertical, upper horizontal conner, lower vertical conner and conner of conner infinite elements. The shape functions of the infinite elements are based on the approximate expressions of the analytical solutions of the propagating waves in the infinite region. Numerical example analyses are presented for demonstrating the effectiveness of the proposed infinite elements.

  • PDF

Development of 3-D Dynamic Infinite Elements for 3D Soil-Structure Interaction Analysis in Multi-layered Halfspaces (적층 반무한지반에서 3차원 지반-구조물 상호작용해석을 위한 동적 무한요소의 개발)

  • 윤정방;서춘교;장수혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.79-86
    • /
    • 2003
  • In this paper, three dimensional dynamic infinite elements are developed for the soil-structure interaction analysis in multi-layered halfspace. For the efficient discretization of 3-D for field regions, five types of dynamic infinite elements are developed, they are the horizontal, vertical, upper horizontal conner, lower vertical conner and conner of conner infinite elements. The shape functions of the infinite elements are based on the approximate expressions of the analytical solutions of the propagation wave in the infinite region. Numerical example analyses are presented for demonstrating the effectiveness of the proposed infinite elements.

  • PDF

Dynamic Infinite Elements for 3D Soil-Structure Interaction Analysis (3차원 지반-구조물 상호작용해석을 위한 동적 무한요소)

  • Seo Choon-Kyo;Yun Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.521-528
    • /
    • 2005
  • In this paper, three dimensional dynamic infinite elements are developed for the soil-structure interaction analysis in multi-layered halfspace. For the efficient discretization of 3-D for field regions, five types of dynamic infinite elements are developed. They are the horizontal, vertical, horizontal comer, vertical comer and horizontal/vertical corner infinite elements. The shape functions of the infinite elements are based on approximate expressions of analytical solutions of propagating waves in the infinite region. Numerical example analyses are presented for compliances of rigid circular and square plates to demonstrate the effectiveness of the proposed infinite elements.

  • PDF

Dynamic Analysis of Asphalt Concrete Pavement Structure

  • 윤경구;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.241-246
    • /
    • 1996
  • A new solution for the dynamic analysis of as asphalt concrete pavements under moving loads has been developed. The asphalt concrete pavement can be modeled in elastic or viscoelastic medium of multi-layered structure. The subgrade can be modeled as either a rigid base or a semi-infinite halfspace. The loads may be constant or arbitrary circular loads into one direction. The method utilizes the Complex Response Method of transient analysis with a continuum solution in the horizontal direction and a finite-element solution in the vertical direction. This proposed method incorporates such important factors as wave propagation, inertia and damping effects of the medium as well as frequency-dependent asphalt concrete properties. The proposed method has been validted with the full-scale field truck test, which was conducted on instrumented asphalt concrete section on a test track at PACCAR Technical Center in Mount Vernon, Washington. Comparison with field strain data from full-scale pavement tests has shown excellent agreement. Theoretical results have shown that the effect of vehicle speed is significant and that it is in part due to the frequency-dependent

  • PDF