• Title/Summary/Keyword: layer-by-layer process

Search Result 4,587, Processing Time 0.031 seconds

Investigation of Firing Conditions for Optimizing Aluminum-Doped p+-layer of Crystalline Silicon Solar Cells

  • Lee, Sang Hee;Lee, Doo Won;Shin, Eun Gu;Lee, Soo Hong
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.12-15
    • /
    • 2016
  • Screen printing technique followed by firing has commonly been used as metallization for both laboratory and industrial based solar cells. In the solar cell industry, the firing process is usually conducted in a belt furnace and needs to be optimized for fabricating high efficiency solar cells. The printed-Al layer on the silicon is rapidly heated at over $800^{\circ}C$ which forms a layer of back surface field (BSF) between Si-Al interfaces. The BSF layer forms $p-p^+$ structure on the rear side of cells and lower rear surface recombination velocity (SRV). To have low SRV, deep $p^+$ layer and uniform junction formation are required. In this experiment, firing process was carried out by using conventional tube furnace with $N_2$ gas atmosphere to optimize $V_{oc}$ of laboratory cells. To measure the thickness of BSF layer, selective etching was conducted by using a solution composed of hydrogen fluoride, nitric acid and acetic acid. The $V_{oc}$ and pseudo efficiency were measured by Suns-$V_{oc}$ to compare cell properties with varied firing condition.

A Study on the Formation of Functionally Composite Layer on Al Alloy Surface by Plasma Transferred Arc Overlaying Process (Plasma Transferred Arc 오버레이법에 의한 Al 합금 표면층의 복합기능화에 관한 연구)

  • 임병수;황선효;서창제
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.107-115
    • /
    • 1999
  • The objective of this research was to study the formation of the thick hardened layer with the addition of metal powder(Cu) and ceramics powders(TiC) on the aluminum 5083 alloys by plasma transferred arc process(PTA process) and to characterize the effect of overlaying conditions on the overlaid layer formation. This was followed by investigating the microstructures of the overlaid layers and mechanical properties such as hardness and wear resistance. The overlaid layer containing copper powder was alloyed and intermetallic compound($CuAl_2$) was formed. The overlaid layers with high melting point TiC powders, however, did not react with base metal. Wear resistance of the alloyed layer was remarkably improved by the formation of $CuAl_2$, precipitate phase, which prevented wear of base aluminum alloys and at higher wear speed, accelerated sliding of the counter part. Wear resistance of the composite layer was also remarkably improved because TiC powder act as a load barring element and Fe debris fragments detached from the counter part act as a solid lubricant on the contact surface.

  • PDF

Frequency effect of TEOS oxide layer in dual-frequency capacitively coupled CH2F2/C4F8/O2/Ar plasma

  • Lee, J.H.;Kwon, B.S.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.284-284
    • /
    • 2011
  • Recently, the increasing degree of device integration in the fabrication of Si semiconductor devices, etching processes of nano-scale materials and high aspect-ratio (HAR) structures become more important. Due to this reason, etch selectivity control during etching of HAR contact holes and trenches is very important. In this study, The etch selectivity and etch rate of TEOS oxide layer using ACL (amorphous carbon layer) mask are investigated various process parameters in CH2F2/C4F8/O2/Ar plasma during etching TEOS oxide layer using ArF/BARC/SiOx/ACL multilevel resist (MLR) structures. The deformation and etch characteristics of TEOS oxide layer using ACL hard mask was investigated in a dual-frequency superimposed capacitively coupled plasma (DFS-CCP) etcher by different fHF/ fLF combinations by varying the CH2F2/ C4F8 gas flow ratio plasmas. The etch characteristics were measured by on scanning electron microscopy (SEM) And X-ray photoelectron spectroscopy (XPS) analyses and Fourier transform infrared spectroscopy (FT-IR). A process window for very high selective etching of TEOS oxide using ACL mask could be determined by controlling the process parameters and in turn degree of polymerization. Mechanisms for high etch selectivity will discussed in detail.

  • PDF

Corrosion behavior of oxide layer formed on surface of high silicon aluminum alloy by PEO process (고규소 알루미늄 합금의 표면에 PEO 공정에 의하여 형성된 산화물 층의 부식 거동)

  • Deok-Yong Park
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.250-258
    • /
    • 2023
  • Ceramic oxide layer was formed on the surface of high silicon aluminum alloy by using PEO (plasma electrolytic oxidation) process. The microstructure of the oxide layer was analyzed using scanning electron microscopy (SEM) and x-ray diffraction patterns (XRD). The high silicon aluminum alloy prior to PEO process consists of Al, Si and Al2Cu phases in XRD analysis, whereas Al2Cu phase selectively disappeared after PEO treatment. Considerable decrease of relative intensity in most of peaks in XRD results of the high silicon aluminum alloy treated by PEO process was observed. It may be attributed to the formation of amorphous phases after PEO treatment. The corrosion behavior of the high silicon aluminum alloy treated by PEO process was investigated using electrochemical impedance spectroscopy (EIS) and other electrochemical techniques (i.e., open circuit potential and polarization curve). Electroanalytical studies indicated that the high silicon aluminum alloy treated by PEO process shows greater corrosion resistance than that untreated by PEO process.

A study on ZrN layer as a diffusion barrier between Cu and Si (Cu와 Si 사이에서 확산방지막으로 사용하기 위한 ZrN 층의 연구)

  • 김창조;김좌연;윤의중;이재갑
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.21-24
    • /
    • 1998
  • The properties of ZrN layer deposited by Sputtering system have been investigated in the application of diffusion barrier layer to copper. ZrN layer exhibited a excellent barrier property up to $700^{\circ}$ and higher resistivity. If an excess $O_2$is protected during the process of ZrN deposition, ZrN layer will be possible to use a diffusion barrier layer to copper.

  • PDF

Manufacturing and Properties of Al-Al2O3 Composite Coating Layer Using Warm Spray Process (Warm spray를 이용한 알루미늄-알루미나 복합 코팅층의 제조 및 특성)

  • Kwon, Eui-Pyo;Lee, Jong-Kweon
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.374-380
    • /
    • 2017
  • Properties of coatings produced by warm spray were investigated in order to utilize this technique as a repair method for Al tire molds. $Al-(0-10%)Al_2O_3$ composite powder was sprayed on Al substrate by warm spraying, and the microstructure and mechanical properties of the composite coating layer were investigated. For comparative study, the properties of the coating produced by plasma spray, which is a relatively high-temperature spraying process, were also investigated. The composite coating layers produced by the two spray techniques exhibited significantly different morphology, perhaps due to their different process temperatures and velocities of particles. Whereas the $Al_2O_3$ particles in the warm sprayed coating layer maintained their initial shape before the spray, flattened and irregular shape $Al_2O_3$ particles were distributed in the plasma sprayed coating layer. The coating layer produced by warm spray showed significantly higher adhesive strength compared to that produced by plasma spray. Hardness was also higher in the warm sprayed coating layer compared to the plasma sprayed one. Moreover, with increasing the fraction of $Al_2O_3$, hardness gradually increased in both spray coating processes. In conclusion, an $Al-Al_2O_3$ composite coating layer with good mechanical properties was successfully produced by warm spray.

Study on Process Conditions for Automatic Debarking and Xylem Separator for Paper Mulberry (닥나무 자동 흑피 및 목질부 제거 장치의 공정 조건 연구)

  • Choi, Si-Hyuk;Kwon, Oh-Hun;Kim, Hyun-Chel
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.3
    • /
    • pp.36-44
    • /
    • 2013
  • This study is focused on the debarking and xylem separation yield of Paper Mulberry. We investigated the most efficient manual on the automatic debarking and xylem separator machine. The bast tissues of Paper Mulberry were separated in three layers including black outer layer, green inner layer, and white inner layer. A target is to save the white inner layer of these three layers as much as possible. The experimental machine most characterize xylem separation and debarking by frictional force between the bulges and Paper Mulberry by the drum rotation. It is possible automatically to operate the machine by controlling the temperature sensor and the time. Debarking process can be know that removed black outer layer has beem accumulate and measured the weight. The content of the extract, holocellulose, lignin and ashes of the white inner layer was analyzed. It is result that conditions of optimum process of the experimental machine is 45 RPM, temperature at $60^{\circ}C$(60 min.) and $80^{\circ}C$(60 min.), mixing bulge of 10 mm(120ea) and 30 mm(120ea) and capacity of Paper Mulberry 10 kg.

Directly Nano-precision Feature Patterning on Thin Metal Layer using Top-down Building Approach in nRP Process (나노 복화공정의 역방향 적층법을 이용한 직접적 나노패턴 생성에 관한 연구)

  • 박상후;임태우;양동열;공홍진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.153-159
    • /
    • 2004
  • In this study, a new process to pattern directly on a thin metal layer using improved nano replication printing (nRP) process is suggested to evaluate the possibilities of fabricating a stamp for nano-imprinting. In the nRP process, any figure can be replicated from a bitmap figure file in the range of several micrometers with nano-scaled details. In the process, liquid-state resins are polymerized by two-photon absorption which is induced by femto-second laser. A thin gold layer was sputtered on a glass plate and then, designed patterns or figures were developed on the gold layer by newly developed top-down building approach. Generally, stamps fur nano-imprinting have been fabricated by using the costly electron-beam lithography process combined with a reactive ion-etching process. Through this study, the effectiveness of the improved nRP process is evaluated to make a stamp with the resolution of around 200nm with reduced cost.

IMPROVEMENT OF FRESHENING PROCESS BY MEANS OF UNDERDRAINAGE CONDUIT

  • Suh, Young-Jea;Kim, Jin-Kyoo
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.93-104
    • /
    • 1993
  • This paper is concerned with the actual comparison analysis for the freshening process in the two selected experimental reservoirs. At the deep freshening reservoir, salinity and depth of the freshwater layer were estimated by simulation technique using the quantitative equation for the two layered flow structures. First of all, it is shown that the effects of underdraiange conduit in the lower layer were reported more effective for the control of upper layer salinity comparing with the case of no underdraiange conduit. Further the results of computation were later compared with the real observed values and the relating parameters of the salt balance equation are conformed even though approximately. Finally it was represented that the salinity of upper layer is easily diluted not only by the tidal gate but also by the underdraiange conduit in the lower layer of the freshening reservoir.

  • PDF

Polymer Based Slim Tactile Sensor: Optimal Design and New Fabrication Method (폴리머 기반 슬림형 촉각센서의 최적 설계 및 새로운 공정 방법)

  • Lee, Jeong-Il;Sato, Kazuo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.131-134
    • /
    • 2011
  • In this study, we propose an optimal design and new fabrication method for a slim tactile sensor. Slim tactile sensor can detect 3-axial forces and has suitable flexibility for intelligent robot fingers. To amplify the contact signal, a unique table-shaped structure was attempted. A new layer-by-layer fabrication process for polymer micromachining that can make a 3D structure by using a sacrificial layer was proposed. A table-shaped epoxy sensing plate with four legs was built on top of a flexible polymer substrate. The plate can convert an applied force to a concentrated stress. Normal and shear forces can be detected by combining responses from metal strain gauges embedded in the polymer substrate. The optimal positions of the strain gauges are determined using the strain distribution obtained from finite element analysis.