• 제목/요약/키워드: layer-by-layer process

검색결과 4,594건 처리시간 0.035초

Tribo-Nanolithography를 이용한 액중 나노가공기술 개발 (Nanoscale Fabrication in Aqueous Solution using Tribo-Nanolithography)

  • 박정우;이득우
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.194-201
    • /
    • 2005
  • Nanoscale fabrication of silicon substrate in an aqueous solution based on the use of atomic force microscopy was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate easily by a simple scratching process (Tribo-Nanolithography, TNL), has been applied instead of conventional silicon cantilever for scanning. A slant nanostructure can be fabricated by a process in which a thin damaged layer rapidly forms in the substrate at the diamond tip-sample junction along scanning path of the tip and simultaneously the area uncovered with the damaged layer is being etched. This study demonstrates how the TNL parameters can affect the formation of damaged layer and the shape of 3-D structure, hence introducing a new process of AFM-based nanolithography in aqueous solution.

Nanoscale Fabrication in Aqueous Solution using Tribo-Nanolithography

  • Park, Jeong-Woo;Lee, Deug-Woo;Kawasegi, Noritaka;Morita, Noboru
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권4호
    • /
    • pp.8-13
    • /
    • 2006
  • Nanoscale fabrication of silicon substrate in an aqueous solution based on the use of atomic force microscopy was demonstrated. A specially designed cantilever with a diamond tip, allowing the formation of a mask layer on the silicon substrate by a simple scratching process (Tribo-Nanolithography, TNL), has been applied instead of the conventional silicon cantilever for scanning. A slant nanostructure can be fabricated by a process in which a thin mask layer rapidly forms on the substrate at the diamond tip-sample junction along scanning path of the tip, and simultaneously, the area uncovered with the mask layer is etched. This study demonstrates how the TNL parameters can affect the formation of the mask layer and the shape of 3-D structure, hence introducing a new process of AFM-based nanolithography in aqueous solution.

심리스 튜브 제조공정 시 피어싱 플러그의 파손거동 (Failure Behavior of Piercing Plug during Seamless Tube Manufacturing Process)

  • 임영빈;윤정모
    • 열처리공학회지
    • /
    • 제30권5호
    • /
    • pp.207-214
    • /
    • 2017
  • In this study, failure behavior of piercing plug for seamless tube manufacturing process was studied. Three different kinds of passed piercing plugs (10, 90, 215 times) were prepared. The shape deformation of the passed piercing plugs was observed by 3D coordinate measuring machine, and the oxidized layer on the surface of piercing plug was observed by optical microscopy. The length reduction of piercing plug presented at 215 times passed plug. It was found that the oxidized layer consisted of outer scale, inner scale and internal oxidation layers, and the inner scale layer had vertical cracks, and interfaces had horizontal cracks. We proposed the failure mechanism of piercing plug during seamless tube manufacturing process based on the formation of vertical and horizontal crack.

다층 기공구조를 갖는 다공성 반응소결 탄화규소 다공체 제조 (Fabrication of Porous Reaction Bonded Silicon Carbide with Multi-Layered Pore Structures)

  • 조경선;김규미;박상환
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.534-539
    • /
    • 2009
  • Reaction Bonded Silicon Carbide(RBSC) has been used for engineering ceramics due to low-temperature fabrication and near-net shape products with excellent structural properties such as thermal shock resistance, corrosion resistance and mechanical strength. Recently, attempts have been made to develop hot gas filter with gradient pore structure by RBSC to overcome weakness of commercial clay-bonded SiC filter such as low fracture toughness and low reliability. In this study a fabrication process of porous RBSC with multi-layer pore structure with gradient pore size was developed. The support layer of the RBSC with multi-layer pore structure was fabricated by conventional Si infiltration process. The intermediate and filter layers consisted of phenolic resin and fine SiC powder were prepared by dip-coating of the support RBSC in slurry of SiC and phenol resin. The temperature of $1550^{\circ}C$ to make Si left in RBSC support layer infiltrate into dip-coated layer to produce SiC by reacting with pyro-carbon from phenol resin.

마이크로 엔드밀링에서 가공깊이에 따른 가공변질층의 특성 (The Characteristics of Damaged Layer According to Depth of Cut in Micro Endmilling)

  • 이종환;권동희;박진효;김병민;정융호;강명창;이성용;김정석
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.77-83
    • /
    • 2007
  • The study on damaged layer is necessary for machinability improvement in micro machining. The damaged layer in metal cutting is derived from plastic deformation and transformation of metal structure. The damaged layer affects micro mold life and micro machine parts. In this study, the damaged layer of micro machined surface of copper is evaluated according to various machining condition. The damaged layer structure and metallurgical characteristics are measured by optical microscope, and evaluated by cutting forces and surface roughness. The scale of this damaged layer depends on cutting process parameters and machining environments. By experimental results, depth of damaged layer was increased with increasing of cutting depth, also the damaged layer is less occurred in down-milling compared to up-milling during micro endmilling operation.

A Plastic BGA Singulation using High Thermal Energy of $2^{nd}$ Harmonic Nd:YAG Laser

  • Lee, Kyoung-Cheol;Baek, Kwang-Yeol;Lee, Cheon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제2C권6호
    • /
    • pp.309-313
    • /
    • 2002
  • In this paper, we have studied minimization of the kerf-width and surface burning, which occurred after the conventional singulation process of the multi-layer BGA board with copper, polyethylene and epoxy glass fiber. The high thermal energy of a pulsed Nd:YAG laser is used to cut the multi-layer board. The most considerable matter in the laser cutting of the multi-layer BGA boards is their different absorption coefficient to the laser beam and their different heat conductivity. The cut mechanism of a multi-layer BGA board using a 2$^{nd}$ harmonic Nd:YAG laser is the thermal vaporization by high temperature rise based on the Gaussian profile and copper melting point. In this experiment, we found that the sacrifice layer and Na blowing are effective in minimizing the surface burning by the reaction between oxygen in the air and the laser beam. In addition, N2 blowing reduces laser energy loss by debris and suppresses surface oxidation. Also, the beam incidence on the epoxy layer compared to polyimide was much more suitable to reduce damage to polyimide with copper wire for the multi layer BGA singulation. When the polyester double-sided tape is used as a sacrifice layer, surface carbonization becomes less. The SEM, non-contact 3D inspector and high-resolution microscope are used to measure cut line-width and surface morphology.

Doctor blade를 이용한 용액형 CIGS 균일 코팅에 관한 연구 (A Study of CIGS Coated Thin-Film Layer using Doctor Blade Process)

  • 유종수;윤성만;김도진;조정대
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.93.2-93.2
    • /
    • 2010
  • Recently, printing and coating technologies application fields have been expanded to the energy field such as solar cell. One of the main reasons, why many researchers have been interested in printing technology as a manufacturing method, is the reduction of manufacturing cost. In this paper, We fabricated CIGS solar cell thin film layer by doctor blade methods using synthesis of CIS precursor nanoparticles ink on molybdenum (Mo) coated soda-lime glass substrate. Synthesis CIS precursor nanoparticles ink fabrication was mixed Cu, In, Se powder and Ethylenediamine, using microwave and centrifuging. Using multi coating process as we could easily fabrication a fine flatness CIS thin-film layer ($0.7{\sim}1.35{\mu}m$), and reduce a manufacture cost and process steps. Also if we use printing and coating method and solution process in each layer of CIGS solar cell (electrode, buffer), it is possible to fabricate all printed thin-film solar cell.

  • PDF

고효율 실리콘 박막태양전지를 위한 신규 수소저감형 비정질실리콘 산화막 버퍼층 개발 (A Novel Hydrogen-reduced P-type Amorphous Silicon Oxide Buffer Layer for Highly Efficient Amorphous Silicon Thin Film Solar Cells)

  • 강동원
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1702-1705
    • /
    • 2016
  • We propose a novel hydrogen-reduced p-type amorphous silicon oxide buffer layer between $TiO_2$ antireflection layer and p-type silicon window layer of silicon thin film solar cells. This new buffer layer can protect underlying the $TiO_2$ by suppressing hydrogen plasma, which could be made by excluding $H_2$ gas introduction during plasma deposition. Amorphous silicon oxide thin film solar cells with employing the new buffer layer exhibited better conversion efficiency (8.10 %) compared with the standard cell (7.88 %) without the buffer layer. This new buffer layer can be processed in the same p-chamber with in-situ mode before depositing main p-type amorphous silicon oxide window layer. Comparing with state-of-the-art buffer layer of AZO/p-nc-SiOx:H, our new buffer layer can be processed with cost-effective, much simple process based on similar device performances.

스핀 코팅 공정에 따른 액정디스플레이용 폴리이미드 배향막 특성 분석 (Effect of Spin Coating Speed on Characteristics of Polyimide Alignment Layer for Liquid Crystal Display)

  • 김진아;최세훈;박홍규
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.58-65
    • /
    • 2022
  • The field of liquid crystal display (LCD) is constantly in the spotlight and the process of depositing an alignment layer in the LCD manufacturing process is very important to obtain excellent performance such as low-power driving and high-speed response to improve LCD performance. Therefore, research on liquid crystal (LC) alignment is being actively conducted. When manufacturing LCD, it is necessary to consider the effect of the alignment layer thickness as one of the factors affecting various LCD performances. In addition, previous studies confirmed the LC alignment characteristics correlate with the rotation speed in the spin coating process. Therefore, the electro-optical properties of the LCD were investigated by manufacturing a polyimide alignment layer by varying the rotation speed in the spin coating process in this study. It was confirmed that the thickness of the polyimide alignment layer was controlled according to the spin coating conditions. The average transmittances of anti-parallel LC cells at the spin coating speed of 2,500 rpm and 3,000 rpm are about 60%, which indicates that the LC cell has relatively higher performance. At the spin coating speed of 3,000 rpm, the voltage-transmittance curve of twisted nematic (TN) LC cell was below 1.5 V, which means that the TN LC cell operated at a low power. In addition, high-speed operating characteristics were confirmed with a response time of less than 30 ms. From these derived data, we confirmed that the ideal spin coating speed is 3,000 rpm. And these results provide an optimized polyimide alignment layer process when considering enhanced future LCD manufacturing.

Structure and Properties of Polymer Infiltrated Alumina Thick Film via Inkjet Printing Process

  • Jang, Hun-Woo;Koo, Eun-Hae;Hwang, Hae-Jin;Kim, Jong-Hee
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.207-207
    • /
    • 2008
  • Modern industry has focused on processing that produce low- loss dielectric substrates used complex micron-sized devices using tick film technologies such as tape casting and slip casting. However, these processes have inherent disadvantages fabricating high density interconnect with embedded passives for high speed communication electronic devices. Here, we have successfully fabricated porous alumina dielectric layer infiltrated with polymer solution by using inkjet printing process. Alumina suspensions were formulated as dielectric ink that were optimized to use in inkjet process. The layer was confirmed by field emission scanning electron microscope (FE-SEM) for measuring microstructure and volume fraction. In addition, the reaction kinetics and electrical properties were characterized by FT-IR and the impedance analyzer. The volume fraction of alumina in porous dielectric alumina layer is around 70% much higher than that in the conventional process. Furthermore, after infiltration on the dielectric layer using polymer resins such as cyanate ester. Excellent Q factors of the dielectric is about 200 when confirmed by impedance analyzer without any high temperature process.

  • PDF