• 제목/요약/키워드: layer deposition

검색결과 2,816건 처리시간 0.037초

Fabrication of Conductive ZnO Thin Filn Using UV-Enhanced Atomic Layer Deposition

  • 양다솜;김홍범;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.373-373
    • /
    • 2012
  • We fabricated conductive zinc oxide (ZnO) thin film at low temperature by UV-enhanced atomic layer deposition. The atomic layer deposition relies on alternate pulsing of the precursor gases onto the substrate surface and subsequent chemisorption of the precursors. In this experiment, diethylzinc (DEZ) and $H_2O$ were used as precursors with UV light. The UV light was very effective to improve the conductivity of the ZnO thin film. The thickness, transparency and resistivity were investigated by ellisometry, UV-visible spectroscopy and Four-point probe.

  • PDF

순차 스퍼터 법에 의한 BSCCO 박막의 특성 (Characteristics of BSCCO Thin Film by Layer-by-layer Deposition)

  • 이희갑;박용필;김귀열;오금곤;최운식;조춘남
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.281-283
    • /
    • 2001
  • $Bi_{2}Sr_{2}CuO_{x}$(Bi-2201) thin films were fabricated by atomic layer-by-layer deposition using an ion bearn sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used with ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition. two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit. then three dimensional growth takes place. Since Cu element is the most difficult to oxidize. only Sr and Bi react with each other predominantly. and forms a buffer layer on the substrate in an amorphous-like structure. which is changed to $SrBi_{2}O_{4}$ by in-situ anneal.

  • PDF

순차 스퍼터 법에 의한 BSCCO 박막의 특성 (Characteristics of BSCCO Thin Film by Layer-by-layer Deposition)

  • 이희갑;박용필;김귀열;오금곤;최운식;조춘남
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.281-283
    • /
    • 2001
  • Bi$_2$Sr$_2$CuO$\_$x/(Bi-2201) thin films were fabricated layer-by-layer deposition using an ion beam sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition, two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit, then three dimensional growth takes place. Since Cu element is the most difficult to oxidize, only Sr and Bi react with each other predominantly, and forms a buffer layer on the substrate in an amorphous-like structure, which is changed to SrBi$_2$O$_4$ by in-situ anneal.

  • PDF

Layer by Layer 법으로 제작한 박막의 에피택셜 성장 (Epitaxy Growth of the Thin Films Fabricated by Layer by Layer Method)

  • 김태곤;천민우;양승호;박용필;박노봉;이희갑
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.529-530
    • /
    • 2006
  • $Bi_2Sr_2CuO_x$ thin films have been fabricated by atomic layer-by-layer deposition using the ion beam sputtering method. During the deposition, 10 and 90 wt%-ozone/oxygen mixture gas of typical pressure of $1{\sim}9{\times}10^{-5}\;Torr$ are supplied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.

  • PDF

원자층 증착법으로 성장된 ZnO 박막의 질소 도핑에 대한 연구 (Nitrogen Doping Characterization of ZnO Prepared by Atomic Layer Deposition)

  • 김도영
    • 한국전기전자재료학회논문지
    • /
    • 제27권10호
    • /
    • pp.642-647
    • /
    • 2014
  • For feasible study of opto-electrical application regarding to oxide semiconductor, we implemented the N doped ZnO growth using a atomic layer deposition technique. The p-type ZnO deposition, necessary for ZnO-based optoelectronics, has considered to be very difficulty due to sufficiently deep acceptor location and self-compensating process on doping. Various sources of N such as $N_2$, $NH_3$, NO, and $NO_2$ and deposition techniques have been used to fabricate p-type ZnO. Hall measurement showed that p-type ZnO was prepared in condition with low deposition temperature and dopant concentration. From the evaluation of photoluminescence spectroscopy, we could observe defect formation formed by N dopant. In this paper, we exhibited the electrical and optical properties of N-doped ZnO thin films grown by atomic layer deposition with $NH_3OH$ doping source.

Thin Film Encapsulation with Organic-Inorganic Nano Laminate using Molecular Layer Deposition and Atomic Layer Deposition

  • 윤관혁;조보람;방지홍;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.270-270
    • /
    • 2016
  • We fabricated an organic-inorganic nano laminated encapsulation layer using molecular layer deposition (MLD) combined with atomic layer deposition (ALD). The $Al_2O_3$ inorganic layers as an effective single encapsulation layer were deposited at 80 degree C using ALD with alternating surface-saturation reactions of TMA and $H_2O$. A self-assembled organic layers (SAOLs) were fabricated at the same temperature using MLD. MLD and ALD deposition process were performed in the same reaction chamber. The prepared SAOL-$Al_2O_3$ organic-inorganic nano laminate films exhibited good mechanical stability and excellent encapsulation property. The measurement of water vapor transmission rate (WVTR) was performed with Ca test. We controlled thickness-ratio of organic and inorganic layer, and specific ratio showed a lowest WVTR value. Also this encapsulation layer contained very few pin-holes or defects which were linked in whole area by defect test. To apply into real OLEDs panels, we controlled a film stress from tensile to compressive and flexibility defined as an elastic modulus with organic-inorganic ratio. It has shown that OLEDs panel encapsulated with nano laminate layer exhibits better properties than single layer encapsulated in acceleration conditions. These results indicate that the organic-inorganic nano laminate thin films have high potential for flexible display applications.

  • PDF

증착온도와 RF Power가 TiCN박막의 플라즈마 화학증착에 미치는 영향 (The Effects of Deposition Temperature and RF Power on the Plasma Assisted Chemical Vapor Deposition of TiCN Films)

  • 김시범;김광호;김상호;천성순
    • 한국세라믹학회지
    • /
    • 제26권3호
    • /
    • pp.323-330
    • /
    • 1989
  • Wear restance titanium carbonitride (TiCN) films were deposited on the SKH9 tool steels and WC-Co cutting tools by plasma assisted chemical vapor deposition (PACVD) using a gaseous mixture of TiCl4, CH4, N2, H2 and Ar. The effects of the deposition temperature and RF(Radio Frequency) power on the deposition rate, chlorine content and crystallinity of the deposited layer were studied. The experimental results showed that the stable and adherent films could be obtained above the deposition temperature of 47$0^{\circ}C$ and maximum deposition rate was obtained at 485$^{\circ}C$. The deposition rate was much affected by RF power and maximum at 40W. The crystallinity of the deposited layer was improved with increasing the deposition temperature and RF power. The TiCN films deposited by PACVD contained much chlorine. The chlorine content in the TiCN films was affected by deposition conditions and decreased with improving the crystallinity of the deposited layer. The deposited TiCN films deposited at the deposition temperature of 52$0^{\circ}C$ and RF power of 40W had an uniform surface with very fine grains of about 500$\AA$ size. The microhardness of the deposited layer was 2,300Kg/$\textrm{mm}^2$.

  • PDF

IBS법에 의한 BSCCO 박막의 에피택셜 성장 (Epitaxial Growth of BSCCO Films by IBS Method)

  • 양승호;박용필
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 춘계종합학술대회
    • /
    • pp.627-630
    • /
    • 2002
  • Bi$_2$Sr$_2$CuOx(Bi-2201) thin films were fabricated by atomic layer-by-layer deposition using an ion bean sputtering method. 10 wt% and 90 wt% ozone mired with oxygen were used with ultraviolet light irradiation to assist oxidation. XRD and RHEED investigations revealed that a buffer layer is formed at the early stage of deposition (less than 10 unit cell), and then c-axis oriented Bi-2201 grows on top of it.

  • PDF

원자층 증착법과 스퍼터링을 이용한 고체산화물 연료전지용 YSZ 전해질에 관한 연구 (Comparison of Yittria Stabilized Zirconia Electrolytes(YSZ) for Thin Film Solid Oxide Fuel Cell by Atomic Layer Deposition and Sputtering)

  • 탄비르 와카스하산;하승범;지상훈;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.84.2-84.2
    • /
    • 2011
  • In this research, two thin film deposition techniques, Atomic Layer Deposition and Sputtering are carried out for the fabrication of Yittria Stabilized Zirconia electrolyte for thin film Solid Oxide Fuel Cell. Zirconium to Yittrium ratio for both cases is about 1/8. Scanning Electron Microscope(SEM) image shows that the growth rate per hour for Atomic Layer Deposition is faster than for sputtering. X-ray Photo-electron Spectroscopy(XPS) shows that the peaks of both Zirconia and Yittria shift towards higher bending energy for the case of Atomic Layer deposition and thus are more strongly attached to the substrate. Later, Nyquist plot was used to compare the conductivity of Yittria Stabilized Electrolyte for both cases. The conductivity at $300^{\circ}C$ for Atomic Layer Deposited Yittria Stabilized Zirconia is found to be $5{\times}10^{-4}S/cm$ while that for sputtered Yittria Stabilized Zirconia is $2{\times}10^{-5}S/cm$ at the same temperature. The reason for better performance for Atomic Layered YSZ is believed to be the Nano-structured layer fabrication that aids in along the plane conduction as compared to the columnarly structured Sputtered YSZ.

  • PDF

OLED의 Thin Film Encapsulation을 위한 MgO 박막의 원자층 증착 장치 및 공정에 관한 연구 (Study on the Atomic Layer Deposition System and Process of the MgO Thin Layer for the Thin Film Encapsulation of OLED)

  • 조의식;권상직
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.22-26
    • /
    • 2021
  • Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation in the organic light emitting diodes (OLED). Of those, a laminated structure of Al2O3 and MgO were applied to provide efficient barrier performance for increasing the stability of devices in air. Atomic layer deposition (ALD) method is known as the most promising technology for making the laminated Al2O3/MgO and is used to realize a thin film encapsulation technology in organic light-emitting diodes. Atomic layer deposited inorganic films have superior barrier performance and have advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the control system of the MgCP2 precursor for the atomic layer deposition of MgO was established in order to deposit the MgO layer stably by the injection time of second level and the stable heating temperature. The deposition rate was obtained stably to be from 4 to 10 Å/cycle using the injection pulse times ranging from 3 to 12 sec and a substrate temperature ranging from 80 to 150 ℃.