• Title/Summary/Keyword: layer deposition

Search Result 2,816, Processing Time 0.031 seconds

Comparison between Bi-superconducting Thin Films Fabricated by Co-Deposition and Layer-by-Layer Deposition

  • Yang, Sung-Ho;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.796-800
    • /
    • 2000
  • Bi$_2$Sr$_2$Ca$_{n}$Cu$_{n+1}$ O$_{y}$(n$\geq$0; BSCCO) thin film is fabricated via two different processes using an ion beam sputtering method i.e. co-deposition and layer-by-layer deposition. A single phase of Bi2212 can be fabricated via the co-deposition process. While it cannot be obtained by the layer-by-layer process. Ultra-low growth rate in our ion beam sputtering system brings out the difference in Bi element adsorption between the two processes and results in only 30% adsorption against total incident Bi amount by layer-by-layer deposition, in contrast to enough Bi adsorption by co-deposition.on.n.

  • PDF

Comparison between BSCCO Thin Films Fabricated by Co-Deposition and Layer-by-Layer Deposition

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.230-234
    • /
    • 2000
  • Bi$_2$Sr$_2$Ca$_{n}$Cu$_{n+1}$ O$_{y}$(n$\geq$0; BSCCO)thin film is fabricated via two different processes using an ion beam sputtering method i.e. co-deposition and layer-by-layer deposition. A single phase of Bi2212 can be fabricated via the co-deposition process. While it cannot be obtained by the layer-by-layer process. Ultra-law growth rate in our ion beam sputtering system brings out the difference in Bi element adsorption between the two processes and results in only 30% adsorption against total incident Bi amount by layer-by-layer deposition, in contrast to enough Bi adsorption by co-deposition.on.n.

  • PDF

Atomic Layer Deposition-incorporated Catalyst Deposition for the Vertical Integration of Carbon Nanotubes

  • Jung, Sung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.688-692
    • /
    • 2011
  • Carbon nanotubes (CNTs) are vertically grown inside high-aspect-ratio vertical pores of anodized aluminum oxide. A CNT catalyst layer is introduced by atomic layer deposition to the bottom of the pores, after which the CNTs are successfully grown from the layer using chemical vapor deposition. The CNTs formed a complete vertical conductive path. The conductivity of the CNT-vertical path is also measured and discussed. The present atomic layer deposition-incorporated catalyst deposition is predicted to enable the integration of CNTs with various challenging configurations, including high-aspect-ratio vertical channels or vertical interconnects.

Characteristics of Bi-superconducting Thin Films Prepared by Co- and Layer-by-Layer Deposition

  • Yang, Sung-Ho;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.40-44
    • /
    • 2000
  • $Bi_2Sr_2Ca_nCu_{n+1}O_y$($n{\geq}0$; BSCCO)thin film is fabricated via two different processes using an ion beam sputtering method i.e. co-deposition and layer-by-layer deposition. A single phase of Bi2212 can be fabricated via the co-deposition process. While it cannot be obtained by the layer-by-layer process. Ultra-low growth rate in our ion beam sputtering system brings out the difference in Bi element adsorption between the two processes and results in only 30% adsorption against total incident Bi amount by layer-by-layer deposition, in contrast to enough Bi adsorption by co-deposition.

  • PDF

XRD Patterns and Bismuth Sticking Coefficient in $Bi_2Sr_2Ca_nCu_{n+1}O_y(n\geq0)$ Thin Films Fabricated by Ion Beam Sputtering Method

  • Yang, Seung-Ho;Park, Yong-Pil
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.158-161
    • /
    • 2006
  • [ $Bi_2Sr_2Ca_nCu_{n+1}O_y(n{\geq}0)$ ] thin film is fabricatedvia two different processes using an ion beam sputtering method i.e. co-deposition and layer-by-layer deposition. A single phase of Bi2212 can be fabricated via the co-deposition process. While it cannot be obtained by the layer-by-layer process. Ultra-low growth rate in our ion beam sputtering system brings out the difference in Bi element adsorption between the two processes and results in only 30% adsorption against total incident Bi amount by layer-by-layer deposition, in contrast to enough Bi adsorption by co-deposition.

Low Temperature Encapsulation-Layer Fabrication of Organic-Inorganic Hybrid Thin Film by Atomic Layer Deposition-Molecular Layer Deposition

  • Kim, Se-Jun;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.274-274
    • /
    • 2013
  • We fabricate encapsulation-layer of OLED panel from organic-inorganic hybrid thin film by atomic layer deposition (ALD) molecular layer deposition (MLD) using Al2O3 as ALD process and Adipoyl Chloride (AC) and 1,4-Butanediamine as MLD process. Ellipsometry was employed to verify self-limiting reaction of MLD. Linear relationship between number of cycle and thickness was obtained. By such investigation, we found that desirable organic thin film fabrication is possible by MLD surface reaction in monolayer scale. Purging was carried out after dosing of each precursor to eliminate physically adsorbed precursor with surface. We also confirmed roughness of the organic thin film by atomic force microscopy (AFM). We deposit AC and 1,4-Butanediamine at $70^{\circ}C$ and investigated surface roughness as a function of increasing thickness of organic thin film. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates super-lattice film can be possibly use as encapsulation in flexible devices.

  • PDF

Analysis of Bi-Superconducting Thin Films Fabricated by Using the Layer by Layer Deposition and Evaporation Deposition Method

  • Yang, Seung-Ho;Cheon, Min-Woo;Lee, Ho-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.517-520
    • /
    • 2007
  • The BSCCO thin film fabricated by using the layer by layer deposition method was compared with the BSCCO thin film fabricated by using the evaporation method. Reevaporation in the form of Bi atoms or $Bi_2O_3$molecules easily bring out the deficiency of Bi atoms in thin film due to the long sputtering time of the layer by layer deposition. On the other hand, the respective atom numbers corresponding to BSCCO phase is concurrently supplied on the film surface in the evaporation deposition process and leads to BSCCO phase formation. Also, it is cofirmed that by optimizing the deposition condition, each single phase of the Bi2201 phase and the Bi2212 phase can be fabricated, the sticking coefficient of Bi element is clearly related to the changing of substrate temperature and the formation of the Bi2212 phase.

  • PDF

Study on Effects of Direct Laser Melting Process Parameters on Deposition Characteristics of AlSi12 powders (AlSi12 분말의 직접 레이저 용융 적층 시 공정 조건에 따른 적층 특성에 관한 연구)

  • Seo, J.Y.;Yoon, H.S.;Lee, K.Y.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.314-322
    • /
    • 2018
  • AlSi12 is a heat-resistant aluminum alloy that is lightweight, corrosion-resistant, machinable and attracting attention as a functional material in aerospace and automotive industries. For that reason, AlSi12 powder has been used for high performance parts through 3D printing technology. The purpose of this study is to observe deposition characteristics of AlSi12 powder in a direct energy deposition (DED) process (one of the metal 3D printing technologies). In this study, deposition characteristics were investigated according to various process parameters such as laser power, powder feed rate, scan speed, and slicing layer thickness. In the single track deposition experiment, an irregular bead shape and balling or humping of molten metal were formed below a laser power of 1,000 W, and the good-shaped bead was obtained at 1.0 g/min powder feed rate. Similar results were observed in multi-layer deposition. Observation of deposited height after multi-layer deposition revealed that over-deposition occurred at all conditions. To prevent over-deposition, slicing layer thickness was experimentally determined at given conditions. From these results, this study presented practical conditions for good surface quality and accurate geometry of deposits.

Characteristics of $B_2$Sr_2$$Ca_{n-1}$$Cu_n$$O_x$ Superconducting Thin Films Fabricated by Layer-by-Layer Deposition Method (Layer-by-Layer 증착법으로 제작한 $B_2$Sr_2$$Ca_{n-1}$$Cu_n$$O_x$초전도 박막의 특성)

  • 유선종;천민우;박용필
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.518-521
    • /
    • 2003
  • Bi$_2$Sr$_2$Ca$_{n-1}$Cu$_{n}$O$_{x}$ superconducting thin films have been fabricated by atomic layer-by-layer deposition using IBS(Ion Beam Sputtering) method. During the deposition, 90 mol% ozone gas of typical pressure of 1~9 $\times$ 10$^{-5}$ Torr are supplied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.grown.

  • PDF

The Comparison to Physical Properties of Large Size Indium Zinc Oxide Transparent Conductive Layer (대면적 상온 Indium Zinc Oxide 투명 도전막의 물성 특성 비교)

  • Joung, Dae-Young;Lee, Young-Joon;Park, Joon-Yong;Yi, Jun-Sin
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.1
    • /
    • pp.6-11
    • /
    • 2008
  • An Indium Zinc Oxide(IZO) transparent conductive layer was deposited on a large size glass substrate by using magnetron dc sputtering method with varying a deposition temperature. As the deposition temperature decreased to a room temperature, the sheet resistance of IZO film increased. But this deposition temperature range is included in an applicable to a device. From a standpoint of the sheet resistance, the differences of the sheet resistance were not great and the uniformity of the layer was uniformed around 10%. Crystallization particles were shown on the surface of the layer as deposition temperature increased, but these particles were not shown on the surface of the layer as deposition temperature decreased to the room temperature. It didn't make a scrap of difference in a transmittance of varying deposition temperature. Therefore, it is concluded that IZO thin film manufactured by the room temperature deposition condition can be used as a large size transparent conductive layer of a liquid crystal display device.