• Title/Summary/Keyword: layer by layer

Search Result 24,337, Processing Time 0.052 seconds

Effects of Plasma Pretreatment of the Cu Seed Layer on Cu Electroplating (Cu seed layer 표면의 플라즈마 전처리가 Cu 전기도금 공정에 미치는 효과에 관한 연구)

  • O, Jun-Hwan;Lee, Seong-Uk;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.802-809
    • /
    • 2001
  • Electroplating is an attractive alternative deposition method for copper with the need for a conformal and conductive seed layer In addition, the Cu seed layer should be highly pure so as not to compromise the effective resistivity of the filled copper interconnect structure. This seed layer requires low electrical resistivity, low levels of impurities, smooth interface, good adhesion to the barrier metal and low thickness concurrent with coherence for ensuring void-free fill. The electrical conductivity of the surface plays an important role in formation of initial Cu nuclei, Cu nucleation is much easier on the substrate with higher electrical conductivities. It is also known that the nucleation processes of Cu are very sensitive to surface condition. In this study, copper seed layers deposited by magnetron sputtering onto a tantalum nitride barrier layer were used for electroplating copper in the forward pulsed mode. Prior to electroplating a copper film, the Cu seed layer was cleaned by plasma H$_2$ and $N_2$. In the plasma treatment exposure tome was varied from 1 to 20 min and plasma power from 20 to 140W. Effects of plasma pretreatment to Cu seed/Tantalum nitride (TaN)/borophosphosilicate glass (BPSG) samples on electroplating of copper (Cu) films were investigated.

  • PDF

Effects of Fe layer on Li insertion/extraction Reactions of Fe/Si Multilayer thin Film Anodes for Lithium Rechargeable Batteries

  • Kim, Tae-Yeon;Kim, Jae-Bum;Ahn, Hyo-Jun;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.193-197
    • /
    • 2011
  • The influences of the thickness and microstructure of Fe layer on the electrochemical performances of Fe/Si multilayer thin film anodes were investigated. The Fe/Si multilayer films were prepared by electron beam evaporation, in which Fe layer was deposited with/without simultaneous bombardment of Ar ion. The kinetics of Li insertion/extraction reactions in the early stage are slowed down with increasing the thickness of Fe layer, but such a slowdown seems to be negligible for thin Fe layers less than about $500{\AA}$. When the Fe layer was deposited with ion bombardment, even the $300{\AA}$ thick Fe layer significantly suppress Li diffusion through the Fe layer. This is attributed to the dense microstructure of Fe layer, induced by ion beam assisted deposition (IBAD). It appears that the Fe/Si multilayer films prepared with IBAD show good cyclability compared to the film deposited without IBAD.

A Study of the Crystallographic Characteristic of ZnO Thin Film Grown on ZnO Buffer Layer (ZnO Buffer Layer에 의한 ZnO 박막의 결정학적 특성에 관한 연구)

  • 금민종;손인환;이정석;신성권;김경환
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.214-217
    • /
    • 2003
  • In this study, we prepared ZnO thin film on $SiO_2$/Si substrate by FTS (Facing Targets Sputtering) apparatus which can reduce damage on the thin film because the bombardment of high-energy Particles such as ${\gamma}$-electron can be restrained. And, properties of thin filnl grown with ZnO buffer-layer which can be suppress initial growth layer was investigated. The crystalline and the c-axis preferred orientation of ZnO thin film was also investigated by XRD. As a result, we noticed that the ZnO thin film has a good crystallographic characteristic at thickness of ZnO buffer layer 10, 20 nm and working pressure 1 mTorr.

탄소나노튜브와 ZnS:Cu,Cl 형광체 무기 EL

  • Kim, Jin-Yeong;Jeong, Dong-Geun;Yu, Se-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.68-68
    • /
    • 2010
  • Electroluminescence (EL) characteristics of green-emission ZnS:Cu,Cl-based ac-type inorganic powder electroluminescent structures were examined by inserting carbon nanotubes (CNTs) into or next to the dielectric layer. For the top-emission type EL structure, where the luminescent light was emitted from the top of the structure, was fabricated by assembling in order, a top electrode, an emitting layer, a dielectric layer, and a bottom electrode from the top. $BaTiO_3$ powder mixed with CNTs was used as a dielectric layer or CNTs were deposited between the bottom electrode and $BaTiO_3$ dielectric layer in order to improve the role of the dielectric layer in the structure. Luminance of an EL structure with CNTs inclusion was greatly enhanced possibly due to the high dielectric constant in the dielectric layer of $BaTiO_3$/CNTs, which is one of hot research topics utilizing nano-objects for intensifying dielectric constant and reducing dielectric loss at the same time. A variation on the CNTs themselves and their inclusion methods in the dielectric layer has been exhorted, and the underlying mechanism for the role of CNTs in the EL structure will be explained in the poster. In order to extend the flexibility of EL devices, EL devices were fabricated on the paper substrate and their performance was compared other EL devices on the plastic-based substrate.

  • PDF

Effect of Interfacial Reaction Layer on Mechanical Properties of 3-plyMg/Al/STS Clad-metal (Mg/Al/STS 3층 클래드재의 기계적 특성에 미치는 계면반응층의 영향)

  • Kim, In-Kyu;Song, Jun-Young;Lee, Young Sun;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.664-670
    • /
    • 2011
  • 3-ply Mg/Al/STS clad-metal was fabricated by the roll bonding process. An interfacial reaction layer was formed at the Mg/Al interface at and above $300^{\circ}C$ whereas no interfacial reaction layer was observed up to $400^{\circ}C$. The effect of the interfacial reaction layer on the mechanical and fracture properties in clad metals after heat treatments were investigated The chemical compositions were analyzed at the Mg/Al interface by an Energy dispersive X-ray analysis (EDX). A tension test was performed to examine the interfacial cracking properties. The Mg layer fractured first, causing a sudden drop of the stress and Al/STS layer continued to deform until the final fracture. Periodic cracks and crack propagation was observed at the reaction layer between Mg and Al.

Pressure Changes During Layer Cupping in a Skin Model

  • Shim, Dong Wook;An, Soo Kwang;Lee, Ha Lim;Lee, Jae Yong;Lee, Byung Ryul;Yang, Gi Young
    • Journal of Acupuncture Research
    • /
    • v.38 no.2
    • /
    • pp.159-164
    • /
    • 2021
  • Background: Cupping is widely used in Korean medicine, but there is a risk of bacterial infection if the suction pump (used for inducing negative pressure) and the patients' skin are not separated. This study aimed to investigate the effect of layer cupping by comparing the pressure changes between layer cupping and conventional cupping. Methods: To evaluate pressure changes the study was designed with 3 types of conditions applied to a skin model: (1) a Dongbang cup with a manual or motor suction pump (conventional cupping); (2) layer cupping with 2 Dongbang cups; and (3) layer cupping with a cup made by 3D printing and a Dongbang cup. Results: When a manual suction pump was used (conventional cupping), the pressure did not decrease steadily, and in 1 section there was an increase in pressure. When layer cupping was used, the pressure in the lower cup (which would be directly applied to the patient's skin), decreased steadily. Conclusion: In the pressure change graph for layer cupping in this skin model, the pressure in the lower cup (which would be placed on the patient's skin) steadily decreased, and reached equilibrium. Therefore, the layer cupping model may help to reduce the risks of bacterial infection.

Slippage on which interface in nanopore filtration?

  • Xiaoxu Huang;Wei Li;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • The flow in a nanopore of filtration membrane is often multiscale and consists of both the adsorbed layer flow and the intermediate continuum fluid flow. There is a controversy on which interface the slippage should occur in the nanopore filtration: On the adsorbed layer-pore wall interface or on the adsorbed layer-continuum fluid interface? What is the difference between these two slippage effects? We address these subjects in the present study by using the multiscale flow equations incorporating the slippage on different interfaces. Based on the limiting shear strength model for the slippage, it was found from the calculation results that for the hydrophobic pore wall the slippage surely occurs on the adsorbed layer-pore wall interface, however for the hydrophilic pore wall, the slippage can occur on either of the two interfaces, dependent on the competition between the interfacial shear strength on the adsorbed layer-pore wall interface and that on the adsorbed layer-continuum fluid interface. Since the slippage on the adsorbed layer-pore wall interface can be designed while that on the adsorbed layer-continuum fluid interface can not, the former slippage can result in the flux through the nanopore much higher than the latter slippage by designing a highly hydrophobic pore wall surface. The obtained results are of significant interest to the design and application of the interfacial slippage in nanoporous filtration membranes for both improving the flux and conserving the energy cost.

Study of Meniscus Formation in a Double Layer Slot Die Head Using CFD (CFD를 이용한 Double Layer 슬롯 다이 헤드의 메니스커스 형성 연구)

  • Gieun Kim;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.65-70
    • /
    • 2024
  • Using a computational fluid dynamics(CFD) simulation tool, we have provided a coating guideline for slot-die coating with a double layer slot die head. We have analyzed the fluid dynamics in terms of the coating speed, flow rate ratio, and viscosity ratio, which are critical for the stability of coating meniscus. We have identified the common coating defects such as break-up, air entrainment, and leakage by varying the coating speeds. The flow rate ratio is the critical parameter determining the wet film thickness of the top and bottom layers. It is shown that when the flow rate ratio exceeds or equals 1.8, air entrainment occurs due to insufficient hydraulic pressure in the bottom layer, even though the total flow rate remains constant. Furthermore, we have found that the flow of the bottom layer is significantly affected by the viscosity of top layer. The viscosity ratio of 4 or higher obstructs the flow of the bottom layer due to the increased hydraulic resistance, resulting in leakage. Finally, we have demonstrated that as the viscosity ratio increases from 0.1 to 10, the maximum coating speed rises from 0.4 mm/s to 1.6 mm/s, and the minimum wet film thickness decreases from 800 ㎛ to 200 ㎛.

  • PDF

An Analysis of Status Quo on the Multi-layer Planting at the landscape Planting Area in Apartment and Neighborhood Parks in Seoul Metropolitan Area (조경식재공간에서 다층식재의 실태분석 -수도권 아파트와 근린공원을 중심으로-)

  • 심우경;이동익
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.140-151
    • /
    • 2001
  • This study based on the theoretical understanding of multi-layer planting which have engineering, ecological and landscape benefits, was conducted to find out the status of multi-layer planting in the apartment and neighborhood park in Seoul. This study was also aimed to seek for the problematic matters, and suggest a solution on the current multi-layer planting. The results of this study were as follows; 1) Since landscape woody plants have been classified just as tree and shrub in Korea, the classification for the multi-layer planting has been unreasonable, and landscape woody plants might have been classified as tree, sub-tree and shrub, or upper, middle, and lower-layer, It could be defined that upper layer is over eight meters in full growth, middle over 3-8 meters and lower under 3 meters. 2) In apartments, the upper layer consisted of eighteen species, the middle and lower layer seven species each. In neighborhood parks, the upper layer consisted of fifteen species, and the middle and lower layer five species each. 3) In terms of planting year of the surveyed areas, there were no differences in the number of species when planting year of the apartment was divided into two groups, the first half(1900-1995) and the second(1996-2000). But, in terms of individual occupation, the percentage was decreased in upper layer, while there was increasing in middle and lower layer. 4) As the result of survey of multi-layered area, it appeared that apartment was shown 0.65 percent and neighborhood park 0.61 percent of the planted area, which was less than 1 percentage of landscape architecturally planted area. 5) In apartment, the number of individual in middle layers has been increased in the first half and the second, but with respect to the correlation with multi-layered area, the apartments had the "$\rho$=0.208", saying that increasing middle layer was scattered planting instead of multi-layered planting. 6) In planting at the apartments in Korea, the planting density was limited, because the layer division was restricted to only tree and shrub. On the contrary, it was divided into upper, middle and lower tree in Japan. Therefore, in Korea, it should be classified as the planting density by dividing into tree, sub-tree, and shrubs, or upper, middle and lower tree by the law. And, it should be considered that the multi-layered planting has a proper organic relation as well as the planting density.g density.

  • PDF

Numerical Analysis of Random Waves Breaking using Boussinesq Equation (Boussinesq방정식을 이용한 불규칙파의 쇄파해석)

  • Lee, Jong-In;Kim, Young-Taek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1931-1934
    • /
    • 2006
  • The accuracy impact of using high-order Boussinesq-type model as compared to the typical order model is examined in this paper. The multi-layer model developed by Lynett and Liu(2004a) is used for simulating of wave breaking over a step region. The overall comparisons between the two-layer model and the hydraulic experiments are quite good. The one-layer model overshoals the wave near the breakpoint, while the two-layer model shoals at a rate more consistent with the experimental data.

  • PDF