• Title/Summary/Keyword: lattice parameter

Search Result 296, Processing Time 0.03 seconds

Effect of $UO_2$ Powder Property and Oxygen Potential on Sintering Characteristics of $UO_2-Gd_2O_3$ Fuel

  • Song, Kun-Woo;Kim, Keon-Sik;Yoo, Ho-Sik;Jung, Youn-Ho
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.128-139
    • /
    • 1998
  • The effect of UO$_2$ powder property and oxygen potential on characteristics of sintered UO$_2$-Gd$_2$O$_3$ fuel pellets has been investigated. Two types of powder, mixture of AUC-UO$_2$ and Gd$_2$O$_3$powders (type I) and mixture of ADU-UO$_2$ and Gd$_2$O$_3$powders (type II), have been prepared, pressed, and sintered at 168$0^{\circ}C$ for 4 hours. Four sintering atmospheres with different mixing ratios of $CO_2$to H$_2$ gas ranging from 0 to 0.3 have been used. UO$_2$-Gd$_2$O$_3$ fuel has lower sintered density than UO$_2$ fuel, and the density drop is larger for powder type I than for powder type II. As the oxygen potential increases, the sintered density of UO$_2$-2wt% Gd$_2$O$_3$pellets increases but that of UO$_2$-10wt% Gd$_2$O$_3$ pellets decreases. It is found that pores are newly formed in UO$_2$-10wt% Gd$_2$O$_3$ pellets in accordance with the decrease in density. The grain size of UO$_2$-Gd$_2$O$_3$ fuel increases and a short range G4 distribution becomes homogeneous as the oxygen potential increases. A long range ed distribution and grain structure are inhomogeneous for powder type II. The lattice parameter of (U,Gd)O$_2$solid solution decreases linearly with Gd$_2$O$_3$ content. The dependence of UO$_2$-Gd$_2$O$_3$fuel characteristics on powder type and sintering atmosphere have been discussed.

  • PDF

A Study on the single crystal growth of the optic-grade $LiTaO_3$ as a electro-optic materials

  • Kim, B.k.;J.K. Yoon
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.526-526
    • /
    • 1996
  • The single crystal of LiTaO3 is well known eletro-optic material as well as the piezoelectric one applied to SAW filter. LiTaO3 has large electro-optic effects, so applied to optical switch, acosto-optic deflector, and optical memory device using photorefractive effects. The crystal growth of SAW-grade LiTaO3 has been studied many aspects, but there is no detail research about optic-grade crystal growth. The conditions of optic-grade LiTaO3 single crystal are as below. The optical transmittance must be over 75%, and axial and radial concentratiom uniformity below 1%. The variation of Curie temperature depending on Li/Ta ratio must be also below 2$^{\circ}C$ and no internal no internal cracks and defects. Because of the limitation of crystal quality, the growing of optic-grade LiTaO3 single crystal is very difficult compared with the growing of SAW-grade. In this research, upper conditions of optic-grade single crystal was investigated after growing of 1 inch diameter and 1.5 inch length LiTaO3 single crystal having no internal cracks and defects using Czochralski method. Curie temperature was determined with DSC and measuring capacitance and lattice parameter was calculated about the grown crystal and ceramic powder samples of various Li/Ta ratio. The result of Tc variation was below 1.2$^{\circ}C$ all over the grown crystal, so it is confirmed that LiTaO3 was grown under congruent melting composition having optical homogeniety. Also, the optical transmittance was about 78%, which was sufficient for optical device.

  • PDF

Growth and electro-optical characteristics of CdSe/GaAs epilayers prepared by electron beam epitaxy (전자빔 증착법에 의한 CdSe/GaAs epilayer의 성장과 그 전기-광학적 특성)

  • Yang, D.I.;Shin, Y.J.;Lee, C.H.;Choi, Y.D.;Yu, P.R.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.70-75
    • /
    • 1997
  • An improved technique based upon an electron beam evaporation system has been developed to prepare cubic thin films In crystalline semiconductors. Zinc blonde CdSe epilayers were grown on GaAs(100) substrate by an e-beam evaporation method. The lattice parameter obtained from (400) reflection is $6.077\AA$, which is in excellent agreement with the value reported in the literature for zinc blonde CdSe. The orientation of the as-grown CdSe epilayer is determined by electron channeling patterns. The crystallinity of epitaxial CdSe layers were investigated on the double crystal X-ray rocking curve. The carrier concentration and mobility of epilayers deduced by Hall effect measurement are about $10^{18}{\textrm}{cm}^{-3}$, $10^2\textrm{cm}^2/V{\cdot}sec$ at room temperature, respectively. The photocurrent spectrum peak of the epilayer at 30 K exhibits a sharp change at 1.746 eV due to the free exciton of cubic CdSe.

  • PDF

High Resolution TEM Observations in $Hg_{1-x}\;Tl_{x}\;Ba_{2}(Ca_{0.86}\;Sr_{0.14})_{2}\;Cu_{3}\;O_{8+\delta}$ Superconductors (고온 초전도체 $Hg_{1-x}\;Tl_{x}\;Ba_{2}(Ca_{0.86}\;Sr_{0.14})_{2}\;Cu_{3}\;O_{8+\delta}$의 고분해능 TEM에 의한 구조 관찰)

  • Lee, Hwack-Joo;Ryu, Hyun;Hur, Nam-H.;Park, Yong-K.
    • Applied Microscopy
    • /
    • v.25 no.4
    • /
    • pp.124-131
    • /
    • 1995
  • High resolution transmission electron microscopic observations on the $Hg_{1-x}\;Tl_{x}\;Ba_{2}(Ca_{0.86}\;Sr_{0.14})_{2}\;Cu_{3}\;O_{8+\delta}$(x=0.00, 0.25, 0.50, 0.75) were carried out using side-entry type TEM working at 300 kV. The TEM samples are prepared by powder method. The pellets are crushed in agatar motar and suspended in $CCl_4$, solution and scooped in holely carbon microgrid. The 1223 structures are observed in all samples with [010] zone axis. Except x=0.25 sample, the lattice parameter a and c tend to decrease as the thallium contents are increased ranging from 0.3936 nm to 0.3713 nm for a, and from 1.6131 nm to 1.5138 nm for c parameter. Those of x=0.25 sample are reduced too much, 0.3785 nm for a, 1.5375 nm for c. The sample with x=0.25 shows the intergrowth of 1223 and 1234 structure with the ratio of 19 to 1. As the thallium content increases, the structures become more stable without having any defect. The samples are damaged by electron beam irradiation during the observation, however the structure can endure longer as the thallium contents are increased.

  • PDF

Optical properties of $ZnIn_2Se$ and $ZnIn_2Se_4$:Co single crystals ($ZnIn_2Se_4$$ZnIn_2Se_4$:Co 단결정의 광학적 특성)

  • 최성휴;방태환;박복남
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.129-135
    • /
    • 1997
  • Undoped and Co-doped $ZnIn_2Se_4$ single crystals crystallized in the tetragonal space group 142m, with lattice constants a=5.748 $\AA$ and c=11.475 $\AA$, and a=5.567 $\AA$ and c=11.401 $\AA$. The optical absorption measured near the fundamental band edge showed that the optical energy band structure of these compounds had an indirect band gap, the direct and the indirect energy gaps of these compounds decreased as temperature changed from 10 to 300 K. The temperature coefficients of the direct energy gaps were found to be $\alpha=3.71\times10^{-4}$eV/K and $\beta$=519 K for $\alpha=3.71\times10^{-4}$eV/K and $\beta$=421K for $ZnIn_2Se_4$: Co. The temperature coefficients of the indirect energy gaps were also found to be $\alpha=2.31\times10^{-4}$ eV/K and $\beta$=285 K for $ZnIn_2Se_4$, and $\alpha=3.71\times10^{-4}$eV/K and $\beta$=609 K for $ZnIn_2Se_4$:Co, respectively. Six impurity optical absorption peaks due to cobalt are observed in $ZnIn_2Se_4$:Co single crystal. These impurity optical absorption peaks can be attibuted to the electronic transitions between the split energy levels of$CO^{2+}$ ions located at Td symmetry site of $ZnIn_2Se_4$ host lattice. The 1st order spin-orbit coupling constant ($\lambda$), Racah parameter (B), and crystal field parameter (Dq) ARE GIVEN AS -$243\textrm{cm}^{-1}, 587\textrm{cm}^{-1}, \;and\;327\textrm{cm}^{-1}$, respectively.

  • PDF

Growth and Opto-electric Characterization of ZnSe Thin Film by Chemical Bath Deposition (CBD(Chemical Bath Deposition)방법에 의한 ZnSe 박막성장과 광전기적 특성)

  • Hong, K.J.;You, S.H.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.62-70
    • /
    • 2001
  • The ZnSe sample grown by chemical bath deposition (CBD) method were annealed in Ar gas at $45^{\circ}C$. Using extrapolation method of X-ray diffraction pattern, it was found to have zinc blend structure whose lattice parameter $a_o$ was $5.6687\;{\AA}$. From Hall effect, the mobility was likely to be decreased by impurity scattering at temperature range from 10 K to 150 K and by lattice scattering at temperature range from 150 K to 293 K. The band gap given by the transmission edge changed from $2.700{\underline{5}}\;eV$ at 293 K to $2.873{\underline{9}}\;eV$ at 10 K. Comparing photocurrent peak position with transmission edge, we could find that photocurrent peaks due to excition electrons from valence band, ${\Gamma}_8$ and ${\Gamma}_7$ and to conduction band ${\Gamma}_6$ were observed at photocurrent spectrum. From the photocurrent spectra by illumination of polarized light on the ZnSe thin film, we have found that values of spin orbit coupling splitting ${\Delta}so$ is $0.098{\underline{1}}\;eV$. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be $0.061{\underline{2}}\;eV$ and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be $0.017{\underline{2}}\;eV$, $0.031{\underline{0}}\;eV$, respectively.

  • PDF

A Study on the Catalytic Characteristics of Oxygen Reduction in an Alkaline Fuel Cell II. Characterization of La0.6Sr0.4Co1-xFexO3 by using XRD, TG, and TPR (알칼리형 연료전지에서 산소환원에 미치는 촉매 특성 연구 II. XRD, TG, TPR를 이용한 La0.6Sr0.4Co1-xFexO3의 특성 분석)

  • Moon, Hyeung-Dae;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.554-564
    • /
    • 1996
  • Oxygen reduction in an alkaline fuel cell was studied by using perovskite of $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$(x=0.00, 0.01, 0.10, 0.20, 0.35, and 0.50) as an oxygen electrode catalyst. The changes in the catalytic properties as a function of Fe content were investigated by XRD, TG, and TPR. XRD patterns gave different lattice parameters of the catalysts. TG study revealed that Fe was so stabilized in the perovskite structure as to be hardly reduced even up to $900^{\circ}C$, and the amount of oxygen which was eliminated at high temperature increased with the fraction of Fe because Fe induced the increase of Co-O binding energy. From TPR study, ${\alpha}$-(low temperature peak) and ${\beta}$-(high temperature peak)states were observed. The bond strength of the ${\beta}$-species which was associated strongly with Co of the perovskite increased proportionally with the fraction of Fe. The ${\alpha}$-species, reversible oxygen, was the active species in the oxygen reduction. The ${\alpha}$-peak temperature which reflected the binding energy between Co and ${\alpha}$-state oxygen moved to lower temperature with the increase of lattice parameter of the catalytst due to the increase of Fe content. The decrease in the binding energy increased the activity in the oxygen reduction, but the decrease of ${\alpha}$-species with the increase of Fe content decreased the activity. The increase in the surface area with Fe content had little effect on the activity.

  • PDF

Crystal Growth of $Y_3Al_5O_{12}$ and Nd : $Y_3Al_5O_{12}$ by Czochralski. Technique (융액인상법에 의한 $Y_3Al_5O_{12}$및 Nd : $Y_3Al_5O_{12}$ 단결정육성)

  • Yu, Yeong-Mun;Lee, Yeong-Guk;Park, Ro-Hak
    • Korean Journal of Crystallography
    • /
    • v.5 no.2
    • /
    • pp.51-66
    • /
    • 1994
  • Y3Al5O2 and Nd: Y3Al5012 single crystals were grown by Czochralskl technique. The effectt of pulling rate rotation rate, and doping level of Nd3+ ion on the crystal quality were studied Various types of defects were analysed by photo-elastic effect and chemical etching method Finally, spectroscopic and laser poputies of grown crystal were measured. Optirmum pulling rate for good quality was dependant on the doping level of Nd3+ ion. It was found that the suitable pulling rates for pure Y3Al5O12 for 3.0∼3.5 a/o Nd3+ ion doped Y3Al5012 and for more than 40 a/o Nd3+ ion doped Y3Al5012 were 2∼4mm/hr, 0.6∼0.5mm/hr, and less than 0.4mm/hr respectively. Solid-liquid interface was convex at the rotation rate of 27∼60rpm, and concave at the rotation rate of 80∼100rpm. Growth axis was confired to <111> direction and lattice parameter was measured to 12.017A. Core (211) facets,striations, inclusions of metal particles, dislocations and optical inhonngeneities were detected. Four level laser transition of Nd3+ion in YIAls012 single crystal were identified by the spectroscopic measurements. Laser rod with tam diameter and 63mm length was fabricated from grown Nd3+ Y3Al5012 sin91e crystals. 1.8lJ of lasing threshould and 0.49% of soope efficiency were measured by the Pulsed laser action.

  • PDF

The Effect of Trivalent Cation Doping on the Low Temperature Phase Stability of 2Y-TZP (3가 양이온 산화물이 첨가된 2Y-TZP의 저온 상안정성)

  • Jang, Ju-Woong;Kim, Hak-Kwan;Lee, Deuk-Yong;Kim, Dae-Joon;Park, Sun-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1055-1062
    • /
    • 2002
  • The phase stability and the Low Temperature Degradation(LTD) mechanism of Tetragonal Zirconia Polycrystals(TZP), sintered specimens of $Y_2O_3$-Stabilized Zirconia(2Y-TZP), doped with trivalent cations, were evaluated by investigating meachnical properties, Raman spectra, lattice parameter variation and the oxygen vacancy behavior under applied electric field. XRD observation was put forward on 2Y-TZP doped with trivalent cation whose ionic radii were larger than $Zr^{4+}(Sc^{3+},\;Yb^{3+},\;Y^{3+},\;Sm^{3+},\;Nd^{3+},\;La^{3+})$ up to 2 mol% and sintered at 1500 h for 1h. For $La^{3+}$ doping, the stability of tetragonal phase was degraded due to the formation of the pyrochlore phase $(La_2Zr_2O_7)$ as the dopant content increased above exceeded 0.5 mol%. As the dosage increased, tetragonal phase maintained for the case of $Sc^{3+}$, whose radius was similar to $Zr^{4+}$, on the other hand, the cubic phase was formed for the cases of $Yb^{3+},\;Y^{3+},\;Sm^{3+},\;Nd^{3+}$. As the radii of dopant cation increased, c/a ratio increased and it was experimentally observed that the amount of monoclinic phase decreased when the specimens were annealed at $220{\circ}C$ for 500 h.

Synthesis of Hexagonal β-Ni(OH)2 Nanosheet as a Template for the Growth of ZnO Nanorod and Microstructural Analysis (ZnO 나노 막대 성장을 위한 기판층으로서 hexagonal β상 Ni(OH)2 나노 시트 합성 및 미세구조 분석)

  • Hwang, Sung-Hwan;Lee, Tae-Il;Choi, Ji-Hyuk;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.111-114
    • /
    • 2011
  • As a growth-template of ZnO nanorods (NR), a hexagonal $\beta-Ni(OH)_2$ nanosheet (NS) was synthesized with the low temperature hydrothermal process and its microstructure was investigated using a high resolution scanning electron microscope and transmission electron microscope. Zinc nitrate hexahydrate was hydrolyzed by hexamethylenetetramine with the same mole ratio and various temperatures, growth times and total concentrations. The optimum hydrothermal processing condition for the best crystallinity of hexagonal $\beta-Ni(OH)_2$ NS was determined to be with 3.5 mM at $95^{\circ}C$ for 2 h. The prepared $Ni(OH)_2$ NSs were two dimensionally arrayed on a substrate using an air-water interface tapping method, and the quality of the array was evaluated using an X-ray diffractometer. Because of the similarity of the lattice parameter of the (0001) plane between ZnO (wurzite a = 0.325 nm, c = 0.521 nm) and hexagonal $\beta-Ni(OH)_2$ (brucite a = 0.313 nm, c = 0.461 nm) on the synthesized hexagonal $\beta-Ni(OH)_2$ NS, ZnO NRs were successfully grown without seeds. At 35 mM of divalent Zn ion, the entire hexagonal $\beta-Ni(OH)_2$ NSs were covered with ZnO NRs, and this result implies the possibility that ZnO NR can be grown epitaxially on hexagonal $\beta-Ni(OH)_2$ NS by a soluble process. After the thermal annealing process, $\beta-Ni(OH)_2$ changed into NiO, which has the property of a p-type semiconductor, and then ZnO and NiO formed a p-n junction for a large area light emitting diode.