• Title/Summary/Keyword: latex blend

Search Result 12, Processing Time 0.023 seconds

Preparation of NR/MG Latex Blend Films and its Mechanical Properties (NR/MG Latex 블랜드필름의 제조 및 그의 기계적특성)

  • Kim, K.S.;Park, J.H.;Eum, J.S.;Kim, S.J.
    • Elastomers and Composites
    • /
    • v.29 no.1
    • /
    • pp.9-17
    • /
    • 1994
  • Methylmetharylate grafted latex(MGL) was prepared by emulsion graft copolymerization of methyl methacrylate onto natural rubber latex(NRL) by using t-butyl hydroperoxide and tetraethylene pentamine in an aqueous medium. Blending of MGL and NRL with different mixing ratio carried out and viscosity and particle size distribution of blend latex were determined. It was found that the optimum condition of mature time, vulcanizing temperature and time for preparation of blend latex films were investigated. latex films prepared by dipping process were meaured. As the reuslt, blend latex(NR-d-MG) films obtained from two-dipping system were more excellent than NR and MG film obtained from one-dipping system.

  • PDF

Gradient Structure and Surface Property of Fluorinated Polyacrylate and Polyurethane Latex Blend Films (불소화 폴리아크릴레이트-폴리우레탄 라텍스 혼성필름의 그레디언트 구조와 표면성질)

  • Zhu, Min;Chen, Kun;Zhang, Yufang;Wang, Xiangrongm;Zhou, Xiangdong
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.265-271
    • /
    • 2014
  • In order to investigate the characteristics of the gradient fluorinated polyacrylate and polyurethane latex blend films, the fluorinated polyacrylate emulsion and the polyurethane emulsion were synthesized, and then the both emulsions were blended at a series of ratios. The effects of content of the fluorinated polyacrylate on the gradient structure and surface property of the blended films were assessed by AFM, XPS, SEM-EDX and surface free energy measurements. It appeared that, while the content of the fluorinated polyacrylate latex was up to 30%, the fluorinated polyacrylate particles were selectively gathered on the film-air (F-A) and film-glass (F-G) interfaces at room temperature. When the content of the fluorinated polyacrylate was under 30%, the gradient structure of fluorinated component was not evident. The further increasing of fluorinated polyacrylate in the mixed system facilitated the formation and enlargement of gradient structure, but the adhesion of film decreased a little.

The Surface Properties of Blend Film of Natural Rubber and Graft Latex by Dipping Process (Dipping법에 의한 천연고무와 그라프트 라텍스 블렌드 필름의 표면특성)

  • Kim, Kong-Soo;Park, Jun-Ha;Eum, Ju-Song
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.990-997
    • /
    • 1994
  • The vulcanized NR and blend films were prepared with mixing of natural rubber latex (NRL) and methyl methacrylated grafted latex(MGL) with various additives by dipping process. It was investigated the basic properties of vulcanized NR films that is optimum condition of the mature time, swelling degree, cure time at $110^{\circ}C$, and measured the mechanical properties of tensile strength and elongation of its condition. In order to identify the surface structure and the slip properties of blend films contact angles and static and kinetic friction coefficient were measured. Contact angles were decreased with increment of blend ratio of MGL, and static and kinetic friction coefficient were decreased rapidly for the NR/MG and NR-d-MG films than for the NR films. From the results, NR/MG and NR-d-MG films has slip's reinforcement in skin contact surface with increased of blend ratio of MGL.

  • PDF

Preparation and Physical Properties of Blend Films of Natural Rubber and Chloroprene Rubber Latex (NR/CR 라텍스 블렌드 필름의 제조 및 물리적 특성)

  • Kim, Kong Soo;Park, Jun Ha;Eum, Ju Song
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.691-697
    • /
    • 1996
  • The NR films were prepared with mixing of natural rubber latex(NRL) with various additives, and NR/CR films were prepared by blend ratio of chloroprene rubber latex(CRL). The swelling degree and the mechanical properties of these films were measured according to the procure time. As a result, optimum condition were showed the swelling degree : 80~85%, precure time : 48~60hrs., and tensile strength was reduced but elongation was increased as increasing the blend ratio of CRL. On the mechanical properties of films prepared by different dipping process in these optimum condition, the tensile strength and tear strength of NR/CR films by one dipping process are better than NR-d-CR films by two dipping process. The surface of these films were observed with scanning electron microscopy(SEM). It was found that phase separation was occured as increasing the blend ratio of CRL.

  • PDF

Preparation and Characterization of Rubber/Clay Nanocomposite Using Skim Natural Rubber Latex (스킴천연고무 라텍스를 이용한 고무/점토 나노복합체의 제조 및 특성)

  • Alex, R.;Kim, M.J.;Lee, Y.S.;Nah, C.
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.252-259
    • /
    • 2006
  • A new route for making rubber/clay nanocomposites was suggested based on skim natural rubber latex (SNRL), which is a protein rich by-product obtained during the centrifugal concentration of natural rubber (NR) latex. NR/acrylonitrile butadiene rubber (NBR) based nanocomposites were prepared from SNRL and NBR latex of 26 % acrylonitrile content by blending of aqueous dispersion of organoclay (OC) followed by coagulation, drying, mill mixing and vulcanization. X-ray diffraction(XRD) studies revealed that NR/NBR blend nanocomposites exhibited a highly intercalated and exfoliated structure, especially for NBR-rich blends. Dynamic mechanical studies showed that more compatible behavior was observed for NBR-rich blends. The 25/75 NR/NBR blend nanocomposite showed the best mechanical properties.

Optimization of Cure System for the ESBR Silica WMB and BR Silica DMB Blend Compounds

  • Yu, Eunho;Kim, Woong;Ryu, Gyeongchan;Ahn, Byungkyu;Mun, Hyunsung;Hwang, Kiwon;Kim, Donghyuk;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.97-104
    • /
    • 2019
  • Emulsion styrene-butadiene rubber silica wet masterbatch (ESBR silica WMB) technology was studied to develop highly filled and highly dispersed silica compounds, involving the preparation of a composite by co-coagulating the modified silica and the rubber latex in a liquid phase. Previous studies have shown that when manufacturing ESBR silica WMB/Butadiene silica dry masterbatch (BR silica DMB) blend compounds, preparing BR silica dry masterbatch and mixing it with ESBR silica WMB gave excellent results. However, WMB still has the problem of lower crosslink density due to residual surfactants. Therefore, in this study, tetrabenzylthiuram disulfide (TBzTD) was added instead of diphenyl guanidine (DPG) in the ESBR silica WMB/BR silica DMB blend compounds and sulfur/CBS contents were increased to evaluate their cure characteristics, crosslink densities, mechanical properties, and dynamic viscoelastic properties. TBzTD was found to be more effective in increasing the crosslink density and to produce superior properties compared to DPG. In addition, with increasing sulfur/CBS contents, mechanical properties and rolling resistance were enhanced due to high crosslink density, but the abrasion resistance was not significantly changed because of the toughness.

Studies on NBR/PVC polymer blend (part 2) (NBR/PVC의 polymer blend에 관(關)한 연구(硏究)(제2보(第2報)))

  • Huh, Dong-Sub;Lee, Jung-Keun
    • Elastomers and Composites
    • /
    • v.6 no.1
    • /
    • pp.71-81
    • /
    • 1971
  • The intention of this study is to investigate the properties of polymer blend, NBR/PVC vulcanizates and blending procedures such as roll-mixing temperatures and sequences for polymer blending of NBR and PVC(resin type). The results obtained are as follows: 1. The roll temperature applied for polymer blending is around $150^{\circ}C$. At this temperature region, the degradation of rubber stock, which may be caused by heat, can be minimized and mill processing in practical application in industries can also be facilitated. 2. It is obviously necessary that a small amount of plasticizers should be added to the stock for improving processibility of roll mixing and physical properties. 3. On roll-mixing sequence, it is more effective that PVC compounded with plasticizer is added to NBR milled on hot roll. 4. The vulcanizates of the blends with different degree of polymerization of PVC ale similar to one another in properties. 5. NBR/PVC(70/30) blends shows the better physical characters than eve,-made foreign latex blend except abrasion-resistance. 6. As PVC addition ratio is increased, the physical properties such as resistance to ozone, tear, heat and oil and tensile strength, modulus, hardness have also improved, on the other hand, tension set and rebound character decreased. 7. The curve of ultimate elongation have point of inflection at the ratio of $30\sim40$ part of PVC. 8. While CR is blended, the physical properties such as brittle point, rebound and resistance to oil in high temperature have improved. 9. Polymer blend of NBR and domestic PVC is applied for the industrial utility such as rubber sole and heel, electric wire cover and oil-resistant packing, coating and gasket, printing roll, film for food packing etc.

  • PDF

A Study on the Properties of Ethylene-vinylacetate Emulsion mixed with SBR, Urethane, Epoxy and Acryl Latex (아크릴, 에폭시, 우레탄 및 SBR계 라텍스를 혼합한 에틸렌 비닐아세테이트 에멀젼 수지의 물성에 관한 연구)

  • Park, Young-Sam;Lee, Bok-Yul;Byun, Youn-Seop;Choi, Sang-Goo
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.324-334
    • /
    • 1998
  • SBR, polyurethane, acryl and epoxy latex were seperately mixed with ethylene-vinylacetate emulsion(EVA) in the range of $0{\sim}50%$ (wt.% ). For the mixtures, the various physical properties were examined. The viscosity of mixtures was mainly influenced by compatability with EVA emulsion, was decreased within 20% (wt.% ) of latex content, and showed the similar values over 20% (wt.% ) of latex content. The workable time of cement mixtures was mainly depended on the reactivity with cement. The formation of film could be only within $30{\sim}40$ minutes from mixing cement. The tack-free time of mixtures was influenced by the sorts of resin and the quantity of cement. The slow order of tack-free time was epoxy mixtures>SBR mixtures>urethane mixtures>acryl mixtures. The pencil hardness of mixtures was $4B{\sim}2H$, represented higher value in cement mixtures than in emulsion state.

  • PDF

Manufacture and Properties of PMMA Grafted Starch/Carbon Black/NBR Composites (PMMA 그래프트 전분/카본블랙/NBR 복합체의 제조와 물성)

  • Kim, Min-Su;Cho, Ur Ryong
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.764-769
    • /
    • 2013
  • Starch was grafted by poly(methyl methacrylate) through the emulsion polymerization method. Modified starch/(acrylonitrile-butadiene rubber) (NBR) compounds were prepared by a latex blend method. The morphology, thermal properties and mechanical properties of the modified starch/carbon black/NBR composites were investigated with the change of starch concentration. The mechanical properties of the composites were improved by the addition of modified starch. But, when the concentration of modified starch was higher than 40 phr, the mechanical properties were deteriorated due to the poor dispersion of modified starch. At the same ratio of starch to carbon black, the composite showed a synergistic reinforcing effect by the good dispersion and high cross-linking density. In addition, the tensile strength, storage modulus, hardness, swelling and other properties were the best.

Evaluation of BR Blending Methods for ESBR/silica Wet Masterbatch Compounds

  • Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Hwang, Kiwon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.242-248
    • /
    • 2017
  • Wet masterbatch (WMB) technology is studied to develop high-content and highly disperse silica-filled compounds. This technology refers to the solidification of surface-modified silica with a rubber solution or latex. Until now, researchs based on styrene butadiene rubber (SBR)/silica WMB has been mainly performed. However, the blending of SBR/silica WMB and BR is not known and is currently under research and development. Therefore, in this study, the BR blending method suitable for emulsion (ESBR)/silica WMB is investigated by measuring their cure characteristics and the mechanical and dynamic viscoelastic properties. As a result, it was confirmed that the blending of ESBR/silica WMB and BR/silica dry masterbatch is most appropriate. However, it showed a disadvantage compared with the conventional mixing method, which was due to the surfactant remained and the sulfuric acid used as the coagulant.