• Title/Summary/Keyword: lateral-torsional-buckling

Search Result 123, Processing Time 0.018 seconds

Analytical Solutions for the Inelastic Lateral-Torsional Buckling of I-Beams Under Pure Bending via Plate-Beam Theory

  • Zhang, Wenfu;Gardner, Leroy;Wadee, M. Ahmer;Zhang, Minghao
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1440-1463
    • /
    • 2018
  • The Wagner coefficient is a key parameter used to describe the inelastic lateral-torsional buckling (LTB) behaviour of the I-beam, since even for a doubly-symmetric I-section with residual stress, it becomes a monosymmetric I-section due to the characteristics of the non-symmetrical distribution of plastic regions. However, so far no theoretical derivation on the energy equation and Wagner's coefficient have been presented due to the limitation of Vlasov's buckling theory. In order to simplify the nonlinear analysis and calculation, this paper presents a simplified mechanical model and an analytical solution for doubly-symmetric I-beams under pure bending, in which residual stresses and yielding are taken into account. According to the plate-beam theory proposed by the lead author, the energy equation for the inelastic LTB of an I-beam is derived in detail, using only the Euler-Bernoulli beam model and the Kirchhoff-plate model. In this derivation, the concept of the instantaneous shear centre is used and its position can be determined naturally by the condition that the coefficient of the cross-term in the strain energy should be zero; formulae for both the critical moment and the corresponding critical beam length are proposed based upon the analytical buckling equation. An analytical formula of the Wagner coefficient is obtained and the validity of Wagner hypothesis is reconfirmed. Finally, the accuracy of the analytical solution is verified by a FEM solution based upon a bi-modulus model of I-beams. It is found that the critical moments given by the analytical solution almost is identical to those given by Trahair's formulae, and hence the analytical solution can be used as a benchmark to verify the results obtained by other numerical algorithms for inelastic LTB behaviour.

Lateral buckling of reinforced concrete beams without lateral support

  • Aydin, Ruhi;Kirac, Nevzat
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.161-172
    • /
    • 1998
  • Reinforced concrete beams possess variable flexural and torsional stiffnesses due to formation of cracks in the tension area along the beam. In order to check the stability of the beam, it is thus more appropriate to divide the beam into a finite number of segments for which mean stiffnesses and also bending moments are calculated. The stability analysis is further simplified, by using these mean values for each segment. In this paper, an algorithm for calculating the critical lateral buckling slenderness ratio for a definite load level, in a reinforced concrete beam without lateral support at the flanges, is presented. By using this ratio, the lateral buckling safety level of a slender beam may be checked or estimated.

Elastic lateral-distortional buckling of I-beams and the Meck Plot

  • Zirakian, Tadeh;Nojoumi, Seyed Ali
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.297-307
    • /
    • 2011
  • Meck Plot is an adapted version of the well-known Southwell method to the case of lateral-torsional buckling, which indeed reflects the physical inter-dependence of lateral flexure (lateral displacement) and torsion (rotation) in the structure. In the recent reported studies, it has been shown experimentally and theoretically that lateral displacement of an I-beam undergoing elastic lateral-distortional mode of buckling is interestingly directly coupled with other various deformation characteristics such as web transverse strain, web longitudinal strain, vertical deflection, and angles of twist of top and bottom flanges, and consequently good results have been obtained as a result of application of the Meck's method on lateral displacement together with each of the aforementioned deformation variables. In this paper, it is demonstrated that even web transverse and longitudinal strains, vertical deflection, and angles of twist of top and bottom flanges of an I-beam undergoing elastic lateral-distortional buckling are two-by-two directly coupled and the application of the Meck Plot on each pair of these deformation variables may still yield reliable predictions for the critical buckling load.

Lateral-torsional buckling analysis of thin-walled composite beam (박벽 복합재료 보의 횡-비틀림 좌굴 해석)

  • 김영빈;이재홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.489-496
    • /
    • 2002
  • The lateral buckling of a laminated composite beam is studied. A general analytical model applicable to the lateral buckling of a composite beam subjected to various types of loadings is derived. This model is based on the classical lamination theory, and accounts for the material coupling for arbitrary laminate stacking sequence configuration and various boundary conditions. The effects of the location of applied loading on the buckling capacity are also included in the analysis. A displace-based one-dimensional finite element model is developed to predict critical loads and corresponding buckling modes for a thin-walled composite beam with arbitrary boundary conditions. Numerical results are obtained for thin-walled composites under central point load, uniformly distributed load, and pure bending with angle-ply and laminates. The effects of fiber orientation location of applied load, and types of loads on the critical buckling loads are parametrically studied.

  • PDF

Inelastic Buckling Behavior of Simply Supported I-Beam under Transverse Loading (횡방향 하중을 받는 I형강 단순보의 비탄성 좌굴거동)

  • Lee, Dong Sik;Oh, Soon Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.155-167
    • /
    • 2004
  • In this paper, the inelastic buckling behavior of the beam under uniform bending was investigated using the energy-based method, which can tackle problems in fourth order eigenvalue. The pattern of residual stress was not available to satisfy the I-sections manufactured in Korea. however; therefore, the well-known polynomial and simplified pattern of residual stress was adopted in this study. The inelastic lateral-distortional buckling behavior of the beam with I-sections manufactured in Korea was investigated. The study was then extended to the inelastic lateral-torsional buckling of the beam by minimizing the out-of-plane web distortion. The inelastic lateral-torsional buckling results obtained in this paper were compared with the prediction of allowable bending stress given in the Korean steel designers' manual (1995). Results showed that the importance of inelastic lateral-distortional buckling did not arise for beams under uniform bending. Likewise, the design method in KSDM (1995) was proven to bo too conservative for intermediate and short spans of beams without intermediate bracing.

Experimental Study on the Top- Lateral Bracing of U-Type Steel Box Girders Using Real Size Specimen: Torsional Stiffness (실물모형 시험를 이용한 U형 강박스거더의 상부 수평브레이싱에 관한 실험적 연구: 비틂강성)

  • Shim, Nak Hoon;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.447-456
    • /
    • 2006
  • In this study, a torsional test for U-type steel box girders was performed to observe the effects of the kind of panel for top lateral walateral bracings on the torsional behavior of the U-type steel girder system. For the structural tests, the test specimen with a two-thirds scale of the system actually constructed in the field was used. In the torsional test to observe the efects of top lateral bracings, the most economical arrangement of the top lateral bracing was found to be the panel width to length ratio of 1:1.5 with the inclined angle of $40^{\circ}$.

Lateral buckling of beams with top bracing

  • Park, Jong-Sup;Kang, Young-Jong
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.613-625
    • /
    • 2003
  • This paper presents the lateral-torsional buckling (LTB) of beams or girders with continuous lateral support at top flange. Traditional moment gradient factors ($C_b$) given by AISC in LRFD Specification for Structural Steel Buildings and by AASHTO in LRFD Bridge Design Specifications were reviewed. Finite-element method buckling analyses of doubly symmetric I-shaped beams with continuous top bracing were conducted to develop new moment gradient factors. A uniformly distributed load was applied at midheight and either or both end moments were applied at the ends of beams. The proposed solutions are simple and accurate for use by engineers to determine the LTB resistance of beams.

Inelastic lateral-distortional buckling of continuously restrained rolled I-beams

  • Lee, Dong-Sik;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.297-314
    • /
    • 2002
  • An energy method of analysis is presented which can be used to study the inelastic lateral-distortional buckling of hot-rolled I-sections continuously restrained at the level of the tension flange. The numerical modelling leads to the incremental and iterative solution of a fourth-order eigenproblem, with very rapid solutions being obtainable, so as to enable a study of the factors that influence the strength of continuously restained I-beams to be made. Although hot-rolled I-sections generally have stocky webs and are not susceptible to reductions in their overall buckling loads as a result of cross-sectional distortion, the effect of elastic restraints, particularly against twist rotation, can lead to buckling modes in which the effect of distortion is quite severe. While the phenomenon has been studied previously for elastic lateral-distortional buckling, it is extended in this paper to include the constitutive relationship characteristics of mild steel, and incorporates both the so-called 'polynomial' and 'simplified' models of residual stresses. The method is validated against inelastic lateral-torsional buckling solutions reported in previous studies, and is applied to illustrate some inelastic buckling problems. It is noted that over a certain range of member slenderness the provisions of the Australian AS4100 steel standard are unconservative.

Theoretical and experimental studies of unbraced tubular trusses allowing for torsional stiffness

  • Chan, S.L.;Koon, C.M.;Albermani, F.G.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.209-222
    • /
    • 2002
  • This paper describes the buckling phenomenon of a tubular truss with unsupported length through a full-scale test and presents a practical computational method for the design of the trusses allowing for the contribution of torsional stiffness against buckling, of which the effect has never been considered previously by others. The current practice for the design of a planar truss has largely been based on the linear elastic approach which cannot allow for the contribution of torsional stiffness and tension members in a structural system against buckling. The over-simplified analytical technique is unable to provide a realistic and an economical design to a structure. In this paper the stability theory is applied to the second-order analysis and design of the structural form, with detailed allowance for the instability and second-order effects in compliance with design code requirements. Finally, the paper demonstrates the application of the proposed method to the stability design of a commonly adopted truss system used in support of glass panels in which lateral bracing members are highly undesirable for economical and aesthetic reasons.