• Title/Summary/Keyword: lateral strength

Search Result 1,217, Processing Time 0.02 seconds

Effect of Stiffener's Web Height against Axial Compression Ultimate Strength Considering Lateral Pressure Load (횡하중을 고려한 압축최종강도에 대한 보강재 치수의 영향)

  • Oh, Young-Cheol;Ko, Jae-Yong;Oh, Dong-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.89-93
    • /
    • 2008
  • Stiffened panels are basic strength members which have been used widely in a vessel or an offshore. They have been used often a deck, a side and a bottom structure of ship and have a number of one sided stiffener in either one or both directions called grillage. Their buckling and plastic collapse become damaged reason of the hull girder so it needs to investigate accurately buckling and ultimate strength of stiffened panels. In the present paper, using the ANSYS, a commercial finite element analysis code, we conducted the evaluation regarding buckling and post-buckling behaviour of stiffened panels, and analyzed stiffener's web height change, considering the effect of lateral pressure load against compression ultimate strength.

  • PDF

Strength of Exterior Flat Plate-Column Connections Subjected to Unbalanced Moment (불균형 휨모멘트를 받는 플랫 플레이트-기둥 외부접합부의 강도)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.470-481
    • /
    • 2003
  • Exterior plate-column connection has an unsymmetrical critical section for eccentric shear of which perimeter is less than that of interior connection, and hence, around the connection, unbalanced moment and eccentric shear are developed by both gravity load and lateral loads. Therefore, exterior connection is susceptible to punching shear failure. Current design provision cannot accurately explain strength of existing experiments, partly due to the complexity in the behavior of exterior plate-column connection, or partly due to the theoretical deficiency of the strength analysis model adopted. In the present study, nonlinear finite element analyses were performed for exterior connections belonging to continuous flat plate. For each direction of lateral load, the behavior and strength of exterior plate-column connection were quite different. Based on the numerical result, strength prediction model for exterior connection was proposed for each direction of lateral load. Compared with existing experiments, the proposed method was verified.

New optimum distribution of lateral strength of shear-type buildings for uniform damage

  • Donaire-Avila, Jesus;Lucchini, Andrea;Benavent-Climent, Amadeo;Mollaioli, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.279-291
    • /
    • 2020
  • The seismic design of conventional frame structures is meant to enhance plastic deformations at beam ends and prevent yielding in columns. To this end, columns are made stronger than beams. Yet yielding in columns cannot be avoided with the column-to-beam strength ratios (about 1.3) prescribed by seismic codes. Preventing plastic deformations in columns calls for ratios close to 4, which is not feasible for economic reasons. Furthermore, material properties and the rearrangement of geometric shapes inevitably make the distribution of damage among stories uneven. Damage in the i-th story can be characterized as the accumulated plastic strain energy (Wpi) normalized by the product of the story shear force (Qyi) and drift (δyi) at yielding. Past studies showed that the distribution of the plastic strain energy dissipation demand, Wpi/ΣWpj, can be evaluated from the deviation of Qyi with respect to an "optimum value" that would make the ratio Wpi/(Qyiδyi) -i.e. the damage- equal in all stories. This paper investigates how the soil type and ductility demand affect the optimum lateral strength distribution. New optimum lateral strength distributions are put forth and compared with others proposed in the literature.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

Seismic Performance Evaluation of Reinforced Concrete Buildings Strengthened by Embedded Steel Frame (내부 매입형 철골조로 보강된 철근콘크리트 건물의 내진 성능평가)

  • Kim, Seonwoong;Lee, Kyungkoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2020
  • This study is to investigate the effect of a retrofitted reinforced concrete frame with non-seismic details strengthened by embedded steel moment frames with an indirect joint, which mitigates the problems of the direct joint method. First, full-scale experiments were conducted to confirm the structural behavior of a 2-story reinforced concrete frame with non-seismic details and strengthened by a steel moment frame with an indirect joint. The reinforced concrete frame with non-seismic details showed a maximum strength of 185 kN at an overall drift ratio of 1.75%. The flexural-shear failure of columns was governed, and shear cracks were concentrated at the beam-column joints. The reinforced concrete frame strengthened by the embedded steel moment frames achieved a maximum strength of 701 kN at an overall drift ratio of 1.5% so that the maximum strength was about 3.8 times that of the specimen with non-seismic details. The failure pattern of the retrofitted specimen was the loss of bond strength between the concrete and the rebars of the columns caused by a prying action of the bottom indirect joint because of lateral force. Furthermore, methods are proposed for calculation of the specified strength of the reinforced concrete frame with non-seismic details and strengthened by the steel moment frame with the indirect joint.

Modeling the confined compressive strength of hybrid circular concrete columns using neural networks

  • Oreta, Andres W.C.;Ongpeng, Jason M.C.
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.597-616
    • /
    • 2011
  • With respect to rehabilitation, strengthening and retrofitting of existing and deteriorated columns in buildings and bridges, CFRP sheets have been found effective in enhancing the performance of existing RC columns by wrapping and bonding CFRP sheets externally around the concrete. Concrete columns and piers that are confined by both lateral steel reinforcement and CFRP are sometimes referred to as "hybrid" concrete columns. With the availability of experimental data on concrete columns confined by steel reinforcement and/or CFRP, the study presents modeling using artificial neural networks (ANNs) to predict the compressive strength of hybrid circular RC columns. The prediction of the ultimate confined compressive strength of RC columns is very important especially when this value is used in estimating the capacity of structures. The present ANN model used as parameters for the confining materials the lateral steel ratio (${\rho}_s$) and the FRP volumetric ratio (${\rho}_{FRP}$). The model gave good predictions for three types of confined columns: (a) columns confined with steel reinforcement only, (b) CFRP confined columns, and (c) hybrid columns confined by both steel and CFRP. The model may be used for predicting the compressive strength of existing circular RC columns confined with steel only that will be strengthened or retrofitted using CFRP.

The Size of Crowd Pressure According to Loading Patterns (가력유형별 군중하중의 크기에 관한 실험적 연구)

  • Kim, Jin-Sik;Shin, Yun-Ho;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.128-129
    • /
    • 2016
  • This study is to categorize the loading of multiple persons on a vertical building elements into three types to test the size of crowd pressure under each loading patterns. The loading patterns is divided under the combination of loading method and loading persons. The loading method is categorized into the method of instantaneous loading of hand on a force plate and the method of continuous loading. The loading persons has been composed of 1~5 persons under the loading patterns. The loading patterns is also divided into lateral loading, longitudinal loading, and agglomeration loading. The subject group has been composed of 12 males in 20s. The load measurement device(size 1800×600×36mm, capacity 20kN, rigidity 28kN/cm) has been designed and manufactured directly. To eliminate the difference of individual, the size of crowd pressure has been converted into the strength to weight ratio (maximum load/weight) for computation. The strength to weight ratio in lateral loading was about 0.91 under instantaneous loading and about 0.47 under continuous loading. The strength to weight ratio in longitudinal loading was about 0.65 under instantaneous loading and about 0.36 under continuous loading. The strength to weight ratio in agglomeration loading was about 0.65 under instantaneous loading and about 0.36 under continuous loading.

  • PDF

Seismic Performance of High-Stringth RC Short Columns Confined in Rectangular Steel Tube (강관구속 고강도 철근콘크리트 기둥의 내진성능)

  • 한병찬
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.182-190
    • /
    • 1997
  • A new method to prevent reinforced concrete columns from brittle failure. The method is called transversely reinforcing method in which only the critical regions are confined in steel tube. The steel tubes can change the failure mode of the latter columns from the shear to the flexure. The steel tubes also increase the compressive strength, shear strength and deformation capacity of the infilled concrete. The following conclusions are reached on bases of the study on the seismic performance of the high-strength RC rectangualr short columns confined in steel tube with shear span tho depth ratio of 2.0 The brittle shear failure of high-strength reinforced concrete short columns with large amount of longitudinal bars, which cannot prevented by using the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the concrete inclusive of cover concrete. High-strength RC short columns confined in rectangular steel tube provided excellent enhancement of seismic performance but, found that plastic buckling of the steel tube in the hinge regions tended to occur when the columns were subjected to large cyclic lateral displacements. In order to prevent the plastic buckling when the columns lies on large on cyclic lateral displacements, the steel ribs were used for columns. Tests have established that the columns provide excellent enhancement of seismic performance of inadequately confined columns.

  • PDF

Shear behavior of short square tubed steel reinforced concrete columns with high-strength concrete

  • Li, Xiang;Zhou, Xuhong;Liu, Jiepeng;Wang, Xuanding
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.411-422
    • /
    • 2019
  • Six shear-critical square tubed steel reinforced concrete (TSRC) columns using the high-strength concrete ($f_{cu,150}=86.6MPa$) were tested under constant axial and lateral cyclic loads. The height-to-depth ratio of the short column specimens was specified as 2.6, and the axial load ratio and the number of shear studs on the steel shape were considered as two main parameters. The shear failure mode of short square TSRC columns was observed from the test. The steel tube with diagonal stiffener plates provided effective confinement to the concrete core, while welding shear studs on the steel section appeared not significantly enhancing the seismic behavior of short square TRSC columns. Specimens with higher axial load ratio showed higher lateral stiffness and shear strength but worse ductility. A modified ACI design method is proposed to calculate the nominal shear strength, which agrees well with the test database containing ten short square TSRC columns with shear failure mode from this study and other related literature.

Effects of Multi-site and Single-site Functional Massage and Stretching on Pain, Tenderness Threshold and Grip Strength in Patients with Lateral Epicondylalgia (가쪽위관절융기 통증 환자에서 복합 부위와 단일 부위에 기능적 마사지와 스트레칭을 적용할 때 통증, 압통 역치와 악력에 미치는 영향)

  • Min-keun Jung;Jae-guk Jeon;Eui-joo Shin
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.29 no.3
    • /
    • pp.13-22
    • /
    • 2023
  • Background: The purpose of this study was to investigate the effects of functional massage and stretching, applied to the elbow and shoulder joints, on pain, tenderness threshold, and grip strength. Methods: A total of 29 individuals were assigned to a single site (n=15) or multiple sites (n=14). Pain measured through the visual analogue scale (VAS), tenderness threshold (TTH), and grip strength (GI) were measured before and four weeks after the intervention. Results: After four weeks of treatment, visual analogue scale significantly decreased in both groups (p<.05), and the tenderness threshold and grip strength significantly increased in both groups (p<.05). There was also a significant difference between the two groups (p<.05). Conclusion: The reduction of visual analogue scale and the increase in the tenderness threshold and grip strength were more significant in the multi-site treatment group than in the single-site treatment group.

  • PDF