• 제목/요약/키워드: lateral stiffness

검색결과 900건 처리시간 0.028초

플랫 플레이트 슬래브 해석을 위한 강성감소계수 제안 (Stiffness Reduction Factor for Flat Plate Slabs)

  • 박영미;한상환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.337-340
    • /
    • 2006
  • The purpose of this study is to propose the stiffness reduction factor for flat plate slabs under lateral loads. Current design code (e.g., ACI 318-05) requires considering the effects of cracks for calculating slab stiffness under lateral loads. This study collected the test results of 20 interior slab-column connections, from which stiffness reduction in each test was estimated with respect to the ratio of applied moment to cracking moment ($M_a/M_{cr}$). Based on collected data, this study proposed equations for calculating stiffness reduction with respect to $M_a/M_{cr}$. To verify the proposed equations, this study conducted the experimental test of interior slab-column connections under quasi-static cyclic loading. From the test, load-deformation curve is compared to that obtained from effective beam width method with the proposed equation for the stiffness reduction. It is shown that the effective beam width method with the proposed equation for stiffness reduction predicts accurately the test results.

  • PDF

프레임의 강성을 고려한 최적 아웃리거 위치의 제안 (Proposal for Optimal Outrigger Location Considering Stiffness of Frame)

  • 김형기
    • 대한건축학회논문집:구조계
    • /
    • 제35권9호
    • /
    • pp.183-190
    • /
    • 2019
  • This paper intended to propose the optimal outrigger position in tall building. For this purpose, a schematic structure design of 70 stories building was accomplished by using MIDAS-Gen. In this analysis research, the key variables were the stiffness of outrigger, the stiffness of frame, the stiffness of shear wall, the stiffness of exterior column connected in outrigger and the outrigger location in height. With the intention of looking for the optimum location of outrigger system in high-rise building, we investigated the lateral displacement in top floor. The study proposed the new method to predict the optimal location of outrigger system considering the frame stiffness. And it is verified that the paper results can be helpful in providing the important engineering materials for finding out the optimum outrigger position in tall building.

증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰 (A Detailed Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-Bearing system)

  • 이안성;하진웅;최동훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.722-728
    • /
    • 2001
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element this paper intends to look into in detail the coupled lateral and torsional vibration characteristics in a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled analyses natural vibration frequencies and their mode shapes upon varying the gear mesh stiffness, and also by comparing the strain energies of lateral and torsional vibration modes. Results have shown that some modes may have coupled lateral and torsional mode characteristics as the gear mesh stiffness increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, i.e., the dominant mode changes from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

  • PDF

축소형 차량의 횡진동 해석 (Lateral Vibration Analysis of a Small Scale Railway Vehicle Model)

  • 이승일;손건호;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.417-422
    • /
    • 2004
  • The vibration of a running vehicle can be classified on lateral, longitudinal and vertical motions. The important factor on the stability and ride quality of a railway vehicle is the lateral motion. The contact between wheel and rail with conicity influences strongly on the lateral motion. In this study, an experiment for the vibration of a running railway vehicle was performed using a small scale railway vehicle model. Also, the effects on the car body, bogie and wheelset were examined for the weight and the stiffness of the first and second suspension. The experimental results showed that the lateral vibration increases as the wheel conicity and stiffness of the second suspension increase. And the lateral vibration of the bogie increases as the mass ratio between car body and bogie increases. Also, the lateral vibration of the wheel becomes high at low speed, while the wheel of 1/20 conicity makes severe vibration at high speed running.

  • PDF

성토체 및 모래매트의 강성이 하부지반의 변형과 성토체의 안전에 미치는 영향에 대한 유한요소해석 (Finite Element Analysis for the Effects on the Stiffness of the Embankment and Sandmat on the Deformation Property and the Safety of Road Embankment)

  • 배우석;김종우;권영철
    • 한국안전학회지
    • /
    • 제22권4호
    • /
    • pp.57-65
    • /
    • 2007
  • Effects on the stiffness of the embankment and sandmat on the construction safety of road embankment was investigated in this study by the numerical experiments using FEM. Two points was mainly focused in this study especially. First the deformation characteristics by the change of the stiffness of sand mat and embankment was investigated by the analyzing the consolidation settlement at the center of the embankment and the lateral displacement at the toe of the embankment. And, the effect of the stiffness on the stress distribution characteristics was also investigated in this study. Furthermore, slope stability analysis was carried out to gain the safe factor by change the stiffness of the sandmat and the embankment. The objective of the study is supplying the result of the numerical experiments for the geotechnical engineers who use the FEM for the safety design of the soil structures. As a result, the stiffness of the superstructures greatly affects on the deformation characteristics both in consolidation settlement and lateral displacement. However, it can be aware that it is not dominants to the stress distribution in the aspect that the no changes in the residual excess pore water pressure. Therefore, the decision of the stiffness has to be carried out deliberately considering not only the consolidation the magnitude of the settlement and the lateral displacement, but the slope stability.

고속철도 궤도패드의 최소 수직 스프링계수 결정에 관한 연구 (A Study on Determination of the Minimum Vertical Spring Stiffness of Track Pads in Korea High Speed Railway.)

  • 김정일;양신추;김연태;서사범
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.504-509
    • /
    • 2005
  • Railway noise and vibration has been recognized as major problems with the speed-up of rolling stock. As a kind of solution to these problems, the decrease of stiffness of track pad have been tried. However, in this case, overturning of rail due to lateral force should be considered because it can have effect on the safety of running train. Therefore, above two things - decrease of stiffness of track pad and overturning of rail due to lateral force - should be considered simultaneously for the appropriate determination of spring coefficient of track pad. With this viewpoint, minimum spring coefficient of track pad is estimated through the comparison between the theoretical relationship about the overturning of rail and 3-dimensional FE analysis result. Two kinds of Lateral force and wheel load are used as input loads. Extracted values from the conventional estimation formula and the Shinkansen design loads are used. It is found that the overturning of rail changes corresponding to the change of the stiffness of track pad and the ratio of lateral force to wheel load. Moreover, it is found that the analysis model can have influence on the results. Through these procedure, minimum spring coefficient of track pad is estimated.

  • PDF

Effect of rigid connection to an asymmetric building on the random seismic response

  • Taleshian, Hamed Ahmadi;Roshan, Alireza Mirzagoltabar;Amiri, Javad Vaseghi
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.183-200
    • /
    • 2020
  • Connection of adjacent buildings with stiff links is an efficient approach for seismic pounding mitigation. However, use of highly rigid links might alter the torsional response in asymmetric plans and although this was mentioned in the literature, no quantitative study has been done before to investigate the condition numerically. In this paper, the effect of rigid coupling on the elastic lateral-torsional response of two adjacent one-story column-type buildings has been studied by comparison to uncoupled structures. Three cases are considered, including two similar asymmetric structures, two adjacent asymmetric structures with different dynamic properties and a symmetric system adjacent to an adjacent asymmetric one. After an acceptable validation against the actual earthquake, the traditional random vibration method has been utilized for dynamic analysis under Ideal white noise input. Results demonstrate that rigid coupling may increase or decrease the rotational response, depending on eccentricities, torsional-to-lateral stiffness ratios and relative uncoupled lateral stiffness of adjacent buildings. Results are also discussed for the case of using identical cross section for all columns supporting eachplan. In contrast to symmetric systems, base shear increase in the stiffer building may be avoided when the buildings lateral stiffness ratio is less than 2. However, the eccentricity increases the rotation of the plans for high rotational stiffness of the buildings.

Cyclic tests of steel frames with composite lightweight infill walls

  • Hou, Hetao;Chou, Chung-Che;Zhou, Jian;Wu, Minglei;Qu, Bing;Ye, Haideng;Liu, Haining;Li, Jingjing
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.163-178
    • /
    • 2016
  • Composite Lightweight (CL) insulated walls have gained wide adoption recently because the exterior claddings of steel building frames have their cost effectiveness, good thermal and structural efficiency. To investigate the seismic behavior, lateral stiffness, ductility and energy dissipation of steel frames with the CL infill walls, five one-story one-bay steel frames were fabricated and tested under cyclic loads. Test results showed that the bolted connections allow relative movement between CL infill walls and steel frames, enabling the system to exhibit satisfactory performance under lateral loads. Additionally, it is found that the addition of diagonal steel straps to the CL infill wall significantly increases the initial lateral stiffness, load-carrying capacity, ductility and energy dissipation capacity of the system. Furthermore, the test results indicate that the lateral stiffness values of the frames with the CL infill wall are similar to those of the bare steel frames in large lateral displacement.

Numerical study on the moment capacity of zed-section purlins under uplift loading

  • Zhu, Jue;Chen, Jian-Kang;Ren, Chong
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.147-161
    • /
    • 2014
  • In this paper a nonlinear finite element analysis model is established for cold-formed steel zed-section purlins subjected to uplift loading. In the model, the lateral and rotational restraints provided by the sheeting to the purlin are simplified as a lateral rigid restraint imposed at the upper flange-web junction and a rotational spring restraint applied at the mid of the upper flange where the sheeting is fixed. The analyses are performed by considering both geometrical and material nonlinearities. The influences of the rotational spring stiffness and initial geometrical imperfections on the uplift loading capacity of the purlin are investigated numerically. It is found that the rotational spring stiffness has significant influence on the purlin performance. However, the influence of the initial geometric imperfections on the purlin performance is found only in purlins of medium or long length with no or low rotational spring stiffness.