• Title/Summary/Keyword: lateral slope

Search Result 208, Processing Time 0.026 seconds

The Effect of Korean Medical Treatments for Facial asymmetry Patients : Five Cases Report (한의학적 치료로 호전된 안면비대칭 5례)

  • Shin, Jeongmin;Ah, Jin-hyang;Lee, Jin-hyuk
    • The Journal of Korean Medicine
    • /
    • v.40 no.3
    • /
    • pp.198-223
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate the effect of Korean medicine treatment on facial asymmetric treatment in 5 cases of facial asymmetry correction by non - surgical treatment such as acupucture, chuna treatment, FCST (Functional cerebrospinal technique) and cranial osteopathy. Methods: We analyzed the initial charts of 5 patients who had undergone facial asymmetry in a Korean medicine clinic and measured the position and distance using the photograph, lateral cephalograms, and whole body radiograms. The results were as follows. Results: To quantify both soft and hard tissues to confirm the results of Korean medicine treatment of facial asymmetry, soft tissues quantitatively measure the displacement of the face, the slope of the left and right eyes, and the slope of the lip in order to grasp the positional displacement of the mandible. As a result, on the average, the correction effect as measured by the angle difference between A and C is $1.8{\pm}0.57$, the correction effect as measured by the angle difference between B and C is $1.4{\pm}0.89$, and the angle difference between D and the horizontal plane is $1.9{\pm}0.89$, and the angle difference between E and the horizontal plane is $1.9{\pm}0.89$. The result of reduced angle difference between A and C means that the head position shifted from the center of the body to the unilateral side was shifted to the center. The decrease in the angle difference between B and C means the restoration of the maxillary distortion relative to the mandible. In hard tissues, numerical values were measured based on the skull standard. The average distortion of the skull was $1.9{\pm}0.67$, and the distortion of the lower eye was $1.4{\pm}0.41$. Conclusion: General studies on facial asymmetric treatment are limited to treatments such as surgery and orthodontics. However, this study confirmed the possibility that facial asymmetry could be corrected by Korean medical treatment consisting of reversible non-surgical treatment rather than irreversible treatment such as surgery or orthodontic treatment. In particular, Korean medicine treatment is effective for muscular asymmetry, soft asymmetry, functional asymmetry, etc. The facial asymmetric treatment of Korean medicine is not limited to the face-centered correction, but the asymmetry of the whole body may be corrected as well.

A Study on the Change of Tensile Force of Friction Type Anchor under Shear Deformation of Ground (지반의 전단변형에 따른 마찰형 앵커의 긴장력 변화에 대한 연구)

  • You, Min-Ku;Kwon, O-Il;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.13-25
    • /
    • 2018
  • When deformation occurs on slope reinforced with anchor, shear stress and bending stress are applied on the shear surface along the slip surface and increase of the shear deformation causes the tension force variation of the anchor. In this study, shear test was performed by measuring the tension force of the anchor by inducing shear deformation in vertical direction of the anchor using a large-scale direct shear test equipment in order to confirm the tension force variation of the anchor induced by shear deformation. The shear test was performed for 8 conditions which were classified according to the anchor reinforcement, separation distance (1D, 2D, 4D) from the shear surface to bonded part and the lateral-pressure condition (0.1 MPa, 0.2 MPa) of adjacent ground. As a result of the shear test, it was found that the separation distance and the lateral-pressure condition affect the shear force of the ground reinforced by anchor and the tension force of the anchor, and experimentally verified that the shear force variation is related to axial force variation of the anchor head and tip. Therefore, it was confirmed that the behavior of the bonded part induced by the shear deformation can be indirectly predicted by analyzing the tendency of the tension force variation of the anchor head.

Clinical Study on Cervical Pain with Focus on Sagittal Spinal Balance and Spinal Curvature (경항통과 척추 시상균형 및 만곡의 상관관계에 대한 임상적 연구)

  • Yi, Won-Il;Koh, Pil-Seong;Joh, Byung-Jin;Kwon, Sin-Ae;Lee, Jung-Woo;Song, Ji-Yeon;Seo, Byung-Kwan;Woo, Hyun-Su;Baek, Yong-Hyeon;Park, Dong-Suk;Nam, Sang-Soo
    • Journal of Acupuncture Research
    • /
    • v.27 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • Objectives : The authors aimed to determine the presence of relationships between cervical pain and cervical curvature, lumbar curvature, sacral slope and sagittal spinal balance. Methods : Medical records of outpatients who made their first visits to the Department of Acupuncture and Moxibustion in the Spine center at Kyung Hee East-West Neo Medical Center between September 1, 2008 and October 31, 2009 were evaluated. A total of 50 patients visiting within the time period had visited with a chief complaint of cervical pain, and had lateral entire spine X-rays taken. After excluding patients with previous spine operations, 46 patients were selected for the final analysis. The cervical lordotic angle(CLA), lumbar lordotic angle(LLA), Ferguson's angle(FA), and sagittal vertical axis(SVA) were measured on the lateral entire spine X-ray cuts, and the relationships between these values and patient gender, age, chief complaint, and duration of symptoms were assessed. Results : No significant difference was found in relationships between gender and measured values. SVA showed statistically significant correlation between age, but CLA, LLA, and FA was not. There was a significant difference in SVA between patients with only cervical pain and those with both cervical pain and low back pain. Patients with a duration of symptoms longer than 6 months showed a statistically significant difference in SVA with those who had shorter symptoms. Correlation analysis between measured values was statistically significant only between LLA and FA. Conclusions : Evaluation and treatment of sagittal imbalance should be considered in patients presenting with cervical pain if symptoms have persisted for over 6 months or have accompanying low back pain.

Micro/Nanotribology and Its Applications

  • Bhushan, Bharat
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.128-135
    • /
    • 1995
  • Atomic force microscopy/friction force microscopy (AFM/FFM) techniques are increasingly used for tribological studies of engineering surfaces at scales, ranging from atomic and molecular to microscales. These techniques have been used to study surface roughness, adhesion, friction, scratching/wear, indentation, detection of material transfer, and boundary lubrication and for nanofabrication/nanomachining purposes. Micro/nanotribological studies of single-crystal silicon, natural diamond, magnetic media (magnetic tapes and disks) and magnetic heads have been conducted. Commonly measured roughness parameters are found to be scale dependent, requiring the need of scale-independent fractal parameters to characterize surface roughness. Measurements of atomic-scale friction of a freshly-cleaved highly-oriented pyrolytic graphite exhibited the same periodicity as that of corresponding topography. However, the peaks in friction and those in corresponding topography were displaced relative to each other. Variations in atomic-scale friction and the observed displacement has been explained by the variations in interatomic forces in the normal and lateral directions. Local variation in microscale friction is found to correspond to the local slope suggesting that a ratchet mechanism is responsible for this variation. Directionality in the friction is observed on both micro- and macro scales which results from the surface preparation and anisotropy in surface roughness. Microscale friction is generally found to be smaller than the macrofriction as there is less ploughing contribution in microscale measurements. Microscale friction is load dependent and friction values increase with an increase in the normal load approaching to the macrofriction at contact stresses higher than the hardness of the softer material. Wear rate for single-crystal silicon is approximately constant for various loads and test durations. However, for magnetic disks with a multilayered thin-film structure, the wear of the diamond like carbon overcoat is catastrophic. Breakdown of thin films can be detected with AFM. Evolution of the wear has also been studied using AFM. Wear is found to be initiated at nono scratches. AFM has been modified to obtain load-displacement curves and for nanoindentation hardness measurements with depth of indentation as low as 1 mm. Scratching and indentation on nanoscales are the powerful ways to screen for adhesion and resistance to deformation of ultrathin fdms. Detection of material transfer on a nanoscale is possible with AFM. Boundary lubrication studies and measurement of lubricant-film thichness with a lateral resolution on a nanoscale have been conducted using AFM. Self-assembled monolyers and chemically-bonded lubricant films with a mobile fraction are superior in wear resistance. Finally, AFM has also shown to be useful for nanofabrication/nanomachining. Friction and wear on micro-and nanoscales have been found to be generally smaller compared to that at macroscales. Therefore, micro/nanotribological studies may help def'me the regimes for ultra-low friction and near zero wear.

Effect of Wind Load on Pile Foundation Stability in Solar Power Facilities on Slopes (풍하중이 경사지 태양광 발전시설의 기초 안정성에 미치는 영향 분석)

  • Woo, Jong-Won;Yu, Jeong-Yeon;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.47-60
    • /
    • 2023
  • At present, in South Korea, there is a growing concern regarding solar power facilities installed on slopes because they are prone to damage caused by natural disasters, such as heavy rainfall and typhoons. Each year, these solar power facilities experience soil erosion due to heavy rainfall and foundation damage or detachment caused by strong wind loads. Despite these challenges, the interaction between the ground and structures is not adequately considered. Current analyses primarily focus on the structural stability under external loads; the overall facility site's stability-excluding the solar structures-in relation to its surrounding slopes is neglected. Therefore, in this study, we use finite-difference method analysis to simulate the behavior of the foundation and piles to assess changes in lateral displacement and bending stress in piles, as well as the safety factor of sloped terrains, in response to various influencing factors, such as pile diameter, spacing between piles, pile-embedding depth, wind loads, and dry and wet conditions. The analysis results indicate that pile spacing and wind loads significantly influence lateral displacement and bending stress in piles, whereas pile-embedding depth strongly influences the safety factor of sloped terrains. Moreover, we found that under certain conditions, the design criteria in domestic standards may not be met.

The Effects of a Thermal Annealing Process in IGZO Thin Film Transistors

  • Kim, Hyeong-Jun;Park, Hyung-Youl;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.289.2-289.2
    • /
    • 2016
  • In-Ga-Zn-O(IGZO) receive great attention as a channel material for thin film transistors(TFTs) as next-generation display panel backplanes due to its superior electrical and physical properties such as a high mobility, low off-current, high sub-threshold slope, flexibility, and optical transparency. For the purpose of fabricating high performance IGZO TFTs, a thermal recovery process above a temperature of $300^{\circ}C$ is required for recovery or rearrangement of the ionic bonding structure. However diffused metal atoms from source/drain(S/D) electrodes increase the channel conductivity through the oxidation of diffused atoms and reduction of $In_2O_3$ during the thermal recovery process. Threshold voltage ($V_{TH}$) shift, one of the electrical instability, restricts actual applications of IGZO TFTs. Therefore, additional investigation of the electrical stability of IGZO TFTs is required. In this paper, we demonstrate the effect of Ti diffusion and modulation of interface traps by carrying out an annealing process on IGZO. In order to investigate the effect of diffused Ti atoms from the S/D electrode, we use secondary ion mass spectroscopy (SIMS), X-ray photoelectron spectroscopy, HSC chemistry simulation, and electrical measurements. By thermal annealing process, we demonstrate VTH shift as a function of the channel length and the gate stress. Furthermore, we enhance the electrical stability of the IGZO TFTs through a second thermal annealing process performed at temperature $50^{\circ}C$ lower than the first annealing step to diffuse Ti atoms in the lateral direction with minimal effects on the channel conductivity.

  • PDF

Static behavior of a laterally loaded guardrail post in sloping ground by LS-DYNA

  • Woo, Kwang S.;Lee, Dong W.;Yang, Seung H.;Ahn, Jae S.
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1101-1111
    • /
    • 2018
  • This study aims to present accurate soil modeling and validation of a single roadside guardrail post as well as a single concrete pile installed near cut slopes or compacted sloping embankment. The conventional Winkler's elastic spring model and p-y curve approach for horizontal ground cannot directly be applied to sloping ground where ultimate soil resistance is significantly dependent on ground inclination. In this study, both grid-based 3-D FE model and particle-based SPH (smoothed particle hydrodynamics) model available in LS-DYNA have been adopted to predict the static behavior of a laterally loaded guardrail post. The SPH model has potential to eliminate any artificial soil stiffness due to the deterioration of the node-connected Lagrangian soil mesh. For this purpose, this study comprises two parts. Firstly, only 3-D FE modeling has been tested to show the numerical validity for a single concrete pile in sloping ground using Mohr-Coulomb material. However, this material option cannot be implemented for SPH elements. Nevertheless, Mohr-Coulomb model has been used since this material model requires six input soil data that can be obtained from the comparative papers in literatures. Secondly, this work is extended to compute the lateral resistance of a guardrail post located near the slope using the hybrid approach that combines Lagrange FE elements and SPH elements by the suitable node-merging option provided by LS-DYNA. For this analysis, the FHWA soil material developed for application to road-base soils has been used and also allows the application of SPH element.

Investigation of Behaviours of Wall and Adjacent Ground Considering Shape of Geosynthetic Retaining Wall (보강토 옹벽의 형상을 고려한 벽체 및 인접지반 거동 연구)

  • Lee, Jong-Hyun;Oh, Dong-Wook;Kong, Suk-Min;Jung, Hyuk-Sang;Lee, Yong-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.95-109
    • /
    • 2018
  • Recently, GRS (Geosynthetic Retaining Segmental) wall has been widely used as a method to replace concrete retaining wall because of its excellent structural stability and economic efficiency. It has been variously applied for foundation, slope, road as well as retaining wall. The GRS wall system, however, has a weak point that is serious crack of wall due to stress concentration at curved part of it. In this study, therefore, behaviour of GRS wall according to shape of it, shich has convex and concave, are analysed and compared using Finite Element analysis as the fundamental study for design optimization. Results including lateral deflection, settlements of ground surface and wall obtained from 2D FE analysis are compared between straight and curved parts from 3D FE analysis.

The Comparison of Sagittal Spinopelvic Parameters between Young Adult Patients with L5 Spondylolysis and Age-Matched Control Group

  • Oh, Young Min;Choi, Ha Young;Eun, Jong Pil
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.3
    • /
    • pp.207-210
    • /
    • 2013
  • Objective : To compare spinopelvic parameters in young adult patients with spondylolysis to those in age-matched patients without spondylolysis and investigate the clinical impact of sagittal spinopelvic parameters in patients with L5 spondylolysis. Methods : From 2009 to 2012, a total of 198 young adult male patients with spondylolysis were identified. Eighty age-matched patients without spondylolysis were also selected. Standing lateral films that included both hip joints were obtained for each subject. Pelvic incidence (PI), sacral slope (SS), pelvic tilt, lumbar lordosis angle, sacral inclination, lumbosacral angle, and sacral table angle were measured in both groups. A comparative study of the spinopelvic parameters of these two groups was performed using SPSS 15.0 (SPSS Inc., Chicago, IL, USA). Results : Among the aforementioned spinopelvic parameters, PI, SS and STA were significantly different between patients with spondylolysis and those without spondylolysis. PI and SS were higher in the spondylolysis group than in the control group, but STA was lower in the spondylolysis group than in the control group. Conclusion : PI and SS were higher in the spondylolysis group than in the control group, but STA was lower in the spondylolysis group than in the control group. Patients with spondylolysis have low STA at birth, which remains constant during growth; a low STA translates into high SS. As a result, PI is also increased in accordance with SS. Therefore, we suggest that STA is an important etiologic factor in young adult patients with L5 spondylolysis.

Evaluation of Landing Stability of Lunar Lander Considering Various Landing Conditions (다양한 착륙환경변수를 고려한 달착륙선 착륙안정성 평가)

  • Jeong, Hyun-Jae;Lim, Jae Hyuk;Kim, Jin-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.124-132
    • /
    • 2018
  • In this paper, landing stability evaluation of lunar lander considering various landing conditions was performed. The status of landing stability of the lunar lander is classified into stable landing, conditionally stable landing due to sliding and unstable landing due to tip-over. In particular, the quasi-static tip-over equation was rearranged considering the phenomena of lowering the center of gravity and extension of foot-pad interval of the landing gear. These results were compared by finite element model analysis results using a commercial software ABAQUS and its validity and accuracy were verified. The verified finite element model was used for examining the tendency of various environmental variables such as landing conditions, friction coefficient, lateral speed and slope of ground.