DOI QR코드

DOI QR Code

Investigation of Behaviours of Wall and Adjacent Ground Considering Shape of Geosynthetic Retaining Wall

보강토 옹벽의 형상을 고려한 벽체 및 인접지반 거동 연구

  • Lee, Jong-Hyun (Department of Civil Engineering, Seoul National Univ. of Science and Technology) ;
  • Oh, Dong-Wook (Department of Civil Engineering, Seoul National Univ. of Science and Technology) ;
  • Kong, Suk-Min (Department of Civil Engineering, Seoul National Univ. of Science and Technology) ;
  • Jung, Hyuk-Sang (Department of Construction and Safety Engineering, Dongyang Univ.) ;
  • Lee, Yong-Joo (Department of Civil Engineering, Seoul National Univ. of Science and Technology)
  • Received : 2018.02.05
  • Accepted : 2018.03.20
  • Published : 2018.03.30

Abstract

Recently, GRS (Geosynthetic Retaining Segmental) wall has been widely used as a method to replace concrete retaining wall because of its excellent structural stability and economic efficiency. It has been variously applied for foundation, slope, road as well as retaining wall. The GRS wall system, however, has a weak point that is serious crack of wall due to stress concentration at curved part of it. In this study, therefore, behaviour of GRS wall according to shape of it, shich has convex and concave, are analysed and compared using Finite Element analysis as the fundamental study for design optimization. Results including lateral deflection, settlements of ground surface and wall obtained from 2D FE analysis are compared between straight and curved parts from 3D FE analysis.

최근 보강토 공법은 구조적으로 안정성이 우수하고 경제성이 뛰어나 콘크리트 옹벽을 대체하는 공법으로 많이 사용되고 있으며, 옹벽뿐만 아니라 기초, 사면, 도로 등에 그 적용 범위가 다양하다. 그러나, 우수와 같은 침투수로 인해 전면 벽에서 충분한 안정성을 확보하지 못하여 붕괴, 배부름 현상 등의 피해가 발생할 수 있고, 특히 곡선부에서는 응력집중 현상에 의해 전면 벽의 균열 등의 문제가 추가적으로 일어날 수 있다. 이는 보강토 옹벽 곡선부에 대한 정확한 설계 기준이 미흡하고 부실시공을 하는데 원인이 있다고 할 수 있다. 따라서 본 연구에서는 보강토 옹벽의 피해사례를 통해 문제점을 파악하고 유한요소 수치해석을 통해 보강토 옹벽 설계를 위한 기초 연구로서, 옹벽의 형상(볼록형, 오목형)에 따른 직선부와 곡선부의 거동을 비교 분석하였다.

Keywords

References

  1. Berg. R. R., Christpoher, B. R., and Samtani, N. C. (2009), "Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes - Volume 1, FHWANHI-10-02", National Highway Institute Federal Highway Administration, Department of Transportation Washington, D.C.
  2. Canadian Geotechnical Society (1985), "Excavations and Retaining Structures", Canadian Foundation Engineering Manual, Part 4.
  3. Choi, I. G. and Park, Y. M. (2014), "Geotechnical Engineering for Filed Practice", Goomibook, pp.359-374.
  4. Das, B. M.(2010), "Principles of geotechnical engineering", CENGAGE Leaning, USA. pp.302-367.
  5. James G. Collin (2001), "Lessons Learned from A Segmental Retaining Wall Failure", Geotextiles and Geomembranes, Vol.19, pp.445-454. https://doi.org/10.1016/S0266-1144(01)00016-4
  6. James M. Gere (2004), SI Mechanics of materials 5th, Intervision, pp.24-26.
  7. Jung, H. S. (2017) "Comparison of Behaviour of Straight and Curved Mechanically Stabilized Earth Walls from Numerical Analysis Results", Korean Geosynthetics Society, Vol.16, No.4, pp.83-92.
  8. Ki, J. S., Rew, W. H., Kim, S. K. and Chun, B. S. (2012) "A Behavior of Curve Section of Reinforced Retaining Wall by Model Test", Korean Society of Civil Engineering, Vol.32, No.6C, pp.249-257. https://doi.org/10.12652/Ksce.2012.32.6C.249
  9. Kim, H. T., Bang, Y. K., Park, J. Y., Choi, D. H., Lee, H. K., and Youn, K. W. (1998) "Quasi-Three Dimensional Stability Analysis of the Geosynthetic-Reinforced Soil Retaining Wall System", Korean Geotechnical Soviety, Vol.14, No.4, pp. 177-201.
  10. Kim, S. S. (2007), "A failure case of reinforced segmental retaining wall", Korean Geosynthetics Society, Vol.6, No.2, pp.15-20.
  11. Kim, Y. M., Lee, K. H. and Lim, K. S. (2006), "A study on the Shear Strength Reduction Technique of Slope Stability Analysis", 2006 Korean Society of Civil Engineers Conference.
  12. Kim, Y. S., Ko, H. W., Kim, J. H., and Lee, J. G. (2012), "Dynamic Deformation Characteristics of Joomunjin Standard Sand Using Cyclic Triaxial Test", Journal of Korean Geotechnical Society, Vol.28, No.12, pp.53-64. https://doi.org/10.7843/kgs.2012.28.12.53
  13. Korea Expressway Corporation (2007), "Geosynthetic retaining segmental wall design code for highway construction".
  14. Korea Ministry of Land Infrastructure and Transport (2003), "Practice tips of national road construction design", pp.37-38.
  15. Korean Geosynthetics Society (2010), "Pracrice of reinforced soil method", CIR, pp.11-141, 187-240.
  16. Korean Geotechnical Society (1998), "Geotextile design and construction", pp.302-303.
  17. Lee, H. M., Yoo, H. K., Seo, Y. C. and Park, Y. S. (2001) "Behavoir of the Geogrid-Reinforced Slope", 2001 Geosynthetics Conference, pp.91-100.
  18. Lee, I. M. (2014), "Principles of Foundation Engineering", CIR, pp.277-302.
  19. Lee, K. W. and Singh, A. (1971), "Relative Denstity and Relative Compaction", Journal of the Soil Mechanics and Foundations Divison, ASCE, Vol.97, No.SM7, pp.1049-1052.
  20. Plaxis (2016), "Plaxis 3D Reference Manual", Plaxis, pp.85-90, 223-225.
  21. Shibuya, S., Kawaguchi, T., Chae, J. G. (2007), "Failure of Reinforced Earth as Attacked by Typhoon", Japanese Geotechnical Society, Soils and Foundation, Vol.47, No.1, pp.153-160. https://doi.org/10.3208/sandf.47.153
  22. Wong, K. S, B. B. Broms (1994), "Failure modes at model tests of a geotextile reinforced wall", Geotextile and Geomembranes, Vol.13, No.6, pp.403-413. https://doi.org/10.1016/0266-1144(94)90005-1
  23. Yoo, C. S., Jung, H, S., and Lee, S. W. (2004) "A case study of the collapsed retaining wall", Korean Geosynthetics Socitey, Vol.3, No.2, pp.13-21.
  24. Yoo, C. S., Jung, H. Y. and Jung, H. S. (2005) "A case study in a rainfall induced failure of geosynthetics-reinforced segmental retaining wall", Korean Geosynthetics Society, Vol.4, No.1, pp.17-25.

Cited by

  1. 억지말뚝의 배치에 따른 흙막이의 수평변위 억제효과와 고속철도의 속도와의 상관성 분석 vol.20, pp.1, 2018, https://doi.org/10.12814/jkgss.2021.20.1.001