• 제목/요약/키워드: lateral rigidity

검색결과 87건 처리시간 0.024초

거더교에서의 윤하중분배에 대한 연석과 중앙분리대의 영향에 관한 연구 (Influence of Curbs and Median Strip on Wheel Load Distribution in Girder Bridges)

  • 오병환;임춘근;유영;김광수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.455-460
    • /
    • 2001
  • Generally, the contribution of curbs and median strip is not considered carefully in analysing and designing the girder bridges. There being curbs, the load given on interior girder relatively reduced and on exterior girder increased. Curbs and median strip reduce the load distribution factor by distributing the load given on girder fairly, In this paper, the Influence of curbs and median strip in wheel distribution through parameter study and lateral distribution test of PSC girder bridge was investigated. Finite-element analysis was performed with parameterizing the flexural rigidity of the girder, span length, girder spacing, median strip, curbs. The influence of curbs and median strip would increase with lowering rigidity of girder. In addition, curbs lower the load distribution factor of exterior and interior girders.

  • PDF

Influence of vertical load on in-plane behavior of masonry infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.609-627
    • /
    • 2016
  • Results of an experimental program are presented in this paper for the influence of vertical load on the in-plane behavior of masonry infilled steel frames. Five half-scaled single-story, single-bay steel frame specimens were tested under cyclic lateral loading. The specimens included four infilled frames and one bare frame. Two similar specimens as well as the bare frame had moment-resisting steel frames, while the remaining two specimens had pinned steel frames. For each frame type, one specimen was tested under simultaneous vertical and lateral loading, whereas the other was subjected only to lateral loading. The experimental results show that the vertical load changes the cracking patterns and failure modes of the infill panels. It improves dissipated hysteresis energy and equivalent viscous damping. Global responses of specimens, including stiffness and maximum strength, do no change by vertical loading considerably. Regarding the ductility, the presence of vertical load is ignorable in the specimen with moment-resisting frame. However, it increases the ductility of the infilled pinned frame specimen, leading to an enhancement in the m-factor by at least 2.5 times. In summary, it is concluded that the influence of the vertical load on the lateral response of infilled frames can be conservatively ignored.

고강도 콘크리트 기둥의 2계 거동에 관한 실험적 연구 (Experiments on Second -Order Behavior of High Strength Concrete Columns)

  • 김진근;양주경
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.167-172
    • /
    • 1992
  • To analyze the effects compressive strength of concrete and longitudinal steel ratio on second-order moment of columns, 30tied rein reinforced concrete columns with hinged ends were tested. The 80mm square cross section was used and the amount of eccentricity was 24mm. The compressive strengths of column specimens with slenderness ratios of 10, 60, and 100were 250, 648 and 880kg/$\textrm{cm}^2$, and the longitudinal steel ratios were 1.98%(4-D6) and 3.95%(8-D6). The ratio of ultimate load capacity to that of short column with the same eccentricity (Pu/Pn) was much decreased at high slenderness ratio with increasing the compressive strength of concrete. And the lateral displacement of slender column at the ultimate load was decreased as the strength was increased. These are due to that at high slenderness ratio the load capacity and behavior of column are affected by flexural rigidity. And, it was also found that with increasing steel ratio, the value of Pu/Pn and the lateral displacement at the ultimate load were larger for the same slenderness ratio.

  • PDF

측방 유동을 받는 일렬 군말뚝의 상호 작용 계수 (Interaction Factors of One-Row Pile Groups Subjected to Lateral Soil Movements)

  • Jeong, Snag-Seom;Kim, Byung-Chul
    • 한국지반공학회논문집
    • /
    • 제16권3호
    • /
    • pp.157-162
    • /
    • 2000
  • 측발유동을 받는 일렬 군말뚝의 그룹효과를 파악하이 위해 3차원 유한요소해석을 수행하였다. 국내의 대표적인 화강풍화토 지반에 선단지지된 말뚝을 대상으로 측방으로 지반변위 발생시 말뚝 두부조건과 중심간격(2.5D, 5.0D, 7.0D, 단독말뚝) 및 말뚝주면의 접촉효과를 고려한 군말뚝의 상호작용계수를 산정하였다. 본 연구 결과, 단독말뚝과 비교하여 군말뚝의 간격이 좁아짐에 따라 상호작용계수는 현저하게 감소하였으며 말뚝 두부조건이 회전구속, 힌지,자유단의 순으로 감소정도가 크게 나타났다. 이는 실내모형실험을 통해 산정된 상호작용계수와도 비교적 잘 일치함을 보였다.

  • PDF

온도에 의한 궤도의 후좌굴 거동 (Post-Buckling Behavior of the Track due to Temperature)

  • 임남형;이지하;강윤석;양신추
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.442-447
    • /
    • 2003
  • The actual behavior of the railroad track structure is suspected to be a complex interaction between the vertical, lateral, longitudinal, and torsional behaviors. A FE program are developed in the present study to be used for extensive nonlinear analysis of the track structures subjected to thermal load. Using the rigorous study on the deformed shape of the rail and tie, and stress resultants, characteristics of the three dimensional behavior are investigated. It is found that the flexural rigidity of the tie and the rotational stiffness of pad-fastener can be affect the behavior of the track structure and the postbuckling behavior in each rail, except lateral behavior, is not same.

  • PDF

현장 궤도 동특성 추정에 관한 연구 (A Study on Dynamic Properties Estimation of On-Site Railroad Track)

  • 이희현;남보현;박용진;이종득
    • 한국철도학회논문집
    • /
    • 제4권2호
    • /
    • pp.39-46
    • /
    • 2001
  • In this paper, train running test and lateral resistant force test are conducted before and after sprinkling the ballast stabilizer in order to investigate the dynamic behaviors and parameters of the railroad track. The measured results are used to confirm the effect of the stabilizer and to validate the numerical results. From this paper, it is known that the stabilizer used in this study has excellent effect on increasing the vertical rigidity and the lateral resistance, and some correction factors should be considered on masses and rigidities of the track components in order to calculate the vibration magnitude reasonably due to running train.

  • PDF

Effectiveness of different confining configurations of FRP jackets for concrete columns

  • Moretti, Marina L.
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.155-168
    • /
    • 2019
  • This paper presents the results of an experimental investigation on the compressive strength of small scale concentrically axially loaded fiber-reinforced polymer (FRP) confined plain concrete columns, with cylinder concrete strength 19 MPa. For columns with circular (150-mm diameter) and square (150-mm side) cross sections wrapped with glass- and carbon-FRP sheets (GFRP and CFRP, respectively) applied with dry lay-up the effect of different jacket schemes and different overlap configurations on the confined characteristics is investigated. Test results indicate that the most cost effective jacket configuration among those tested is for one layer of CFRP, for both types of sections. In square sections the location of the lap length, either in the corner or along the side, does not seem to affect the confined performance. Furthermore, in circular sections, the presence of an extra wrap with FRP fibers parallel to the column's axis enhances the concrete strength proportionally to the axial rigidity of the FRP jacket. The recorded strains and the distributions of lateral confining pressures are discussed. Existing design equations are used to assess the lateral confining stresses and the confined concrete strength making use of the measured hoop strains.

The relationship between time-varying eccentricity of load with the corner lateral displacement response of steel structure during an earthquake

  • Takin, Kambiz;Hashemi, Behrokh H.;Nekooei, Masoud
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.801-812
    • /
    • 2016
  • In an actual design, none of the structures with shear behaviors will be designed for torsional moments. Any failure or damages to roofs, infills, shear walls, and braces caused by an earthquake, will inevitably result in relocation of center of mass and rigidity of the structure. With these changes, the dynamic characteristics of structure could be changed during an earthquake at any moment. The main objective of this paper is to obtain the relationship between time-varying eccentricity of load and corner lateral displacement. In this study, various methods have been used to determine the structural response for time-varying lateral corner displacement. As will be seen below, some of the structural calculation methods result in a significant deviation from the actual results, although these methods include the interaction effects of modes. Controlling the lateral displacement of structure can be performed in different ways such as, passive dampers, friction dampers, semi-active systems including the MR damper and active Systems. Selecting and locating these control systems is very important to bring the maximum safety with minimum cost into the structure. According to this study will be show the relation between the corner lateral displacements of structure and time-varying eccentricity by different kind of methods during an earthquake. This study will show that the response of the structure at the corners due to an earthquake can be very destructive and because of changing the eccentricity of load, calculating the maximum possible response of system can be carried out by this method. Finally, some kind of systems must be used for controlling these displacements. The results shows that, the CQC, DSC and exact methods is comply each other but the results of Vanmark method is not comfortable for these kind of buildings.

Pushover analysis of gabled frames with semi-rigid connections

  • Shooshtari, Ahmad;Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1557-1568
    • /
    • 2015
  • The nonlinear static analysis of structure, which is under the effect of lateral loads and provides the capacity curve of the structure, is defined as a push-over analysis. Ordinarily, by using base shear and the lateral displacement of target point, the capacity curve is obtained. The speed and ease of results interpretation in this method is more than that of the NRHA responses. In this study, the nonlinear static analysis is applied on the semi-rigid steel gabled frames. It should be noted that the members of this structure are analyzed as a prismatic beam-column element in two states of semi-rigid connections and supports. The gabled frame is modeled in the OpenSees software and analyzed based on the displacement control at the target point. The lateral displacement results, calculated in the top level of columns, are reported. Furthermore, responses of the structure are obtained for various support conditions and the rigidity of nodal connections. Ultimately, the effect of semi-rigid connections and supports on the capacity and the performance point of the structure are presented in separated graphs.

Strengthening of hollow brick infill walls with perforated steel plates

  • Aykac, Sabahattin;Kalkan, Ilker;Seydanlioglu, Mahmut
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.181-199
    • /
    • 2014
  • The infill walls, whose contribution to the earthquake resistance of a structure is generally ignored due to their limited lateral rigidities, constitute a part of the lateral load bearing system of an RC frame structure. A common method for improving the earthquake behavior of RC frame structures is increasing the contribution of the infill walls to the overall lateral rigidity by strengthening them through different techniques. The present study investigates the influence of externally bonded perforated steel plates on the load capacities, rigidities, and ductilities of hollow brick infill walls. For this purpose, a reference (unstrengthened) and twelve strengthened specimens were subjected to monotonic diagonal compression. The experiments indicated that the spacing of the bolts, connecting the plates to the wall, have a more profound effect on the behavior of a brick wall compared to the thickness of the strengthening plates. Furthermore, an increase in the plate thickness was shown to result in a considerable improvement in the behavior of the wall only if the plates are connected to the wall with closely-spaced bolts. This strengthening technique was found to increase the energy absorption capacities of the walls between 4 and 14 times the capacity of the reference wall. The strengthened walls reached ultimate loads 30-160% greater than the reference wall and all strengthened walls remained intact till the end of the test.