• Title/Summary/Keyword: lateral motion

Search Result 796, Processing Time 0.029 seconds

Analysis of Projectile Factors and Biomechanical Characteristics of Men's Hammer Throwing during Turning Phases (남자 해머던지기 시 각 회전 별 역학적 특성과 투사 요인 분석)

  • Kim, Tae-Sam;Ryu, Ji-Seon;Lee, Mi-Sook;Yoon, Suk-Hoon;Park, Jae-Myoung
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.141-152
    • /
    • 2011
  • The purpose of this study was to investigate the projectile factors and biomechanical characteristics of men's hammer throwing during turning phases. Four national leveled athletes including Korea national record holder participated in this study. After full warm-up, each participant performed 6 trials of hammer throwing with their best. The best recorded trial was selected from each participant and they were analyzed for this study. Three-Dimensional motion analysis using a system of 5 video cameras at a sampling frequency 60Hz was performed for this study. As the number of turns increased, athletes revealed following characteristics. 1) The single and double support time decreased. 2) The rotation foot was closed to axis foot and it revealed greater medio-lateral displacement than that of horizontal one. 3) At the transition point from double support to single support, ball was in front of rotation foot so that not much angular velocity obtained. For the projectile factors, projectile angle did not show differences while projectile height and velocity revealed differences among the participants. It may indicated that each athlete has different fitness and skill level to resist centrifugal force which become larger as the number of turn increased.

Determination of the Elbow Transverse Joint Using the Helical Axis Concept and its Application to the Development of a Kinematic Arm Model (나선축 개념을 이용한 팔꿈치 관절의 3차원 회전축 측정과 측정 결과를 반영한 인체 팔 모델의 개발)

  • Woo, Bum-Young;Jung, Eui-S.;Yun, Myung-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2000
  • To determine the exact direction and location of the human joint in motion is crucial in developing a more accurate human model and producing a more fitting artificial joint. There have been several reports on the biomechanical analysis of the joint to determine the anatomy and movement of joints. However, all the previous researches were made in vitro study, that is, they investigated the passive movement of the joint from cadavers and the suggested location of the joint axis was difficult to make practical applications due to the lack of the direction of joint axis. Also, in many biomechanical models, each joint axis is assumed to lie horizontally or vertically to the adjacent links. Such an assumption causes inherent inaccuracy. In this study, the direction and location of the transverse elbow axis was obtained with respect to the global coordinate system whose origin is on the lateral epicondyle of the humerus. The suggested result based on the global coordinate system lying on the external landmark will be helpful to understand the information of the axis and to make an application. From the experiments conducted for five subjects, the direction and location of the elbow transverse joint was determined for each subject by the helical axis method. A statistical validation was also performed to confirm the result. Finally, the result was applied to develop a simple elbow model which is a part of the kinematic arm model. The simple elbow movement model was developed to validate the significance of the result and the kinematic arm model was able to describe the geometry of any complex linkage system. As a result, the errors incurred from the proposed model were significantly reduced when compared to the ones from the previous approach.

  • PDF

Effects of Therapeutic Exercise on Posture, Pain and Asymmetric Muscle Activity in a Patient with Forward Head Posture: case report (치료적운동이 전방두부자세 환자의 자세, 통증 및 비대칭적 근육활성에 미치는 영향: 증례보고)

  • Yoo, Kyung-Tae;Lee, Ho-Seong
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.11 no.1
    • /
    • pp.71-82
    • /
    • 2016
  • PURPOSE: The purpose of this case report was to determine the effect of therapeutic exercise on posture, pain, and muscle activity in two patients with forward head posture (FHP). METHODS: A-31-year-old male (patient A) and a 19-year-old women (patient B) presented with FHP, neck pain, and headache. The therapeutic exercise program consisted of cervical mobilization, deep cervical flexors strengthening, and cervical extensors stretching, for 40 min/d, 2 d/week, for 8 weeks. Neck pain (VAS), neck disability (NDI), cervical range of motion (CROM), lateral view of cervical spine X-ray (indicating the FHP), and asymmetrical neck and shoulder muscular activity ratio were measured before, after 4 weeks, and after 8 weeks of corrective exercise. RESULTS: VAS and NDI decreased in patients A and B after exercise compared to before the program. CROM increased in patients A and B at flexion, extension, side bending, and rotation after exercise compared to before the program. FHP decreased in patients A and B at distance after exercise compared to before the program. In addition, asymmetrical neck and shoulder muscles activity ratio improved in patients A and B after exercise compared to before the program. CONCLUSION: We demonstrated in a case report that therapeutic exercise increases ROM, decreases pain and disability of neck, FHP, and asymmetry muscle activity ratio in patients with FHP. These finding have clinical implications for therapeutic exercise in patients with FHP.

Flight Dynamic Identification of a Model Helicopter Using CIFER® (III) - Transfer Function Analysis - (CIFER ® 를 이용한 무인 헬리콥터의 동특성 분석 (III) - 전달함수 해석 -)

  • Bae, Yeong-Hwan;Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.192-200
    • /
    • 2012
  • Purpose: Aerial application of chemicals with an agricultural helicopter allows for precise and timely spraying and reduces working labor and pollution. An attitude controller for an agricultural helicopter would be helpful to aerial application operator. The objectives of this paper are to determine the transfer function models and to estimate the handling qualities of a bare-airframe model helicopter. Methods: Transfer functions of a model unmanned helicopter were estimated by using NAVFIT and DERIVID modules of the $CIFER^{(R)}$ program to the time history data of frequency sweep flight tests. Control inputs of the transfer functions were elevator, aileron, rudder and collective pitch stick positions and the outputs were resulting on-axis movements of the fuselage. Results: Minimum realization of the transfer functions for pitch rate output to elevator control input and roll rate output to aileron control input produced second order transfer functions with undamped natural frequencies around 3.0 Hz and damping ratios of 0.139 and 0.530, respectively. The equivalent time delays of the transfer functions ranged from 0.16 to 0.44 second. Sensitivity analysis of the proposed parameters allowed derivation of minimal realization of the transfer functions. Conclusions: Handling quality of the model helicopter was addressed based on the eigenvalues of the transfer functions, corresponding undamped natural frequencies with damping ratios. The equivalent time delays of the lateral-directional motion ranged from 0.16 to 0.44 second, longer than the 0.1 to 0.15 second requirement for well-controlled typical manned aerial vehicles.

Isolated Anterior Dislocation of the Radial Head in Adult - A Case Report - (성인에서 발생된 요골 두 급성 전방 탈구 - 증례 보고 -)

  • Heo, Youn-Moo;Kim, Woo-Sik;Kim, Sung-Hun;Jeon, Teak-Soo;Kim, Sang-Bum;Oh, Byung-Hak
    • Clinics in Shoulder and Elbow
    • /
    • v.10 no.1
    • /
    • pp.131-135
    • /
    • 2007
  • We report an isolated anterior dislocation of the radial head in a 23-year-old man after a fall on the outstretched arm. At the time of the injury, the patient's elbow was in a position of mild flexion and pronation which was suddenly further pronated as he fell down. The radial head was incarcerated by the lateral portion of brachialis muscle, and annular ligament was interposed between capitellum and radial head. Open reduction was performed. During 12 months follow-up, reduction of radial head was well maintained without a limitation of range of motion.

Surgical therapy of Sprengel deformity by Woodward procedure - A case report - (Woodward 술식을 이용한 Sprengel 변형의 수술적 치료 - 1예 보고 -)

  • Lee, Chae-Chil;Cho, Sung-Do;Kang, Byeong-Seong;Kim, Sang-Woo;Ko, Sang-Hun
    • Clinics in Shoulder and Elbow
    • /
    • v.10 no.1
    • /
    • pp.146-149
    • /
    • 2007
  • Congenital undescended scapula is congenital structural abnormality which affects only one side usually. Scapula located higher than the usual and rotating deformity that inferior angle to medial side, superior angle to lateral side is common. This report presents one case of the surgical therapy of a sprengel deformity patient who passed an optimal operation period with age $3{\sim}7$years old, and includes brief review of the literature. 7 years old boy whose chief complaint was the limitation of left scapular-thoracic movement and he had an omovertebral bone bridge and periscapular muscle atrophy. There was improvement of motion ranges and cosmetic problems after surgical treatment.

Impact of initial damage path and spectral shape on aftershock collapse fragility of RC frames

  • Liu, Yang;Yu, Xiao-Hui;Lu, Da-Gang;Ma, Fu-Zi
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.529-540
    • /
    • 2018
  • The influences of initial damage paths and aftershock (AS) spectral shape on the assessment of AS collapse fragility are investigated. To do this, a four-story ductile reinforced concrete (RC) frame structure is employed as the study case. The far-field earthquake records recommended by FEMA P695 are used as AS ground motions. The AS incremental dynamic analyses are performed for the damaged structure. To examine the effect of initial damage paths, a total of six kinds of initial damage paths are adopted to simulate different initial damage states of the structure by pushover analysis and dynamic analysis. For the pushover-based initial damage paths, the structure is "pushed" using either uniform or triangle lateral load pattern to a specified damage state quantified by the maximum inter-story drift ratio. Among the dynamic initial damage paths, one single mainshock ground motion or a suite of mainshock ground motions are used in the incremental dynamic analyses to generate a specified initial damage state to the structure. The results show that the structure collapse capacity is reduced as the increase of initial damage, and the initial damage paths show a significant effect on the calculated collapse capacities of the damaged structure (especially at severe damage states). To account for the effect of AS spectral shape, the AS collapse fragility can be adjusted at different target values of ${\varepsilon}$ by using the linear correlation model between the collapse capacity (in term of spectral intensity) and the AS ${\varepsilon}$ values, and coefficients of this linear model is found to be associated with the initial damage states.

Analysis on Tension Response of Mooring Line by Lateral Excitation (수평가진에 의한 계류라인의 장력응답 해석)

  • Jung Dong Ho;Kim Hyeon Ju;Moon Deok Su;Park Han Il;Choi Hak Sun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.185-191
    • /
    • 2004
  • A mooring system can be applied to keep the position of a floating structures. In this study, the structural analysis is carried out to analyze the dynamic characteristics of a mooring line for a floating breakwater. A three-dimensional equations of motion for a submerged chain are derived. Bending stiffness is considered for the necessary restoring force in the regions of zero tension. A fortran program is to be developed by employing finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. The results of simulation show good agreement in tension response pattern with the experimental results of a reference. The results of this study can contribute for the design of mooring system for a floating breakwater.

  • PDF

A Response to Postural Response to Sine Curve Vestibular Electric Stimulation during Standing (기립자세동안 전정기관에 인가된 정현파 전류자극에 대한 자세균형 응답)

  • Lee, Ah-Reum;Yu, Mi;Kim, Jin-Ho;Kim, Dong-Wook;Kim, Jung-Ja
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.210-216
    • /
    • 2010
  • This study is vestibular electric stimulation applied between the mastoids during quiet standing elicits postural sway. The aim of this study was to characterize the postural sway response to continuous sinusoidal vestibular electric stimulation across various stimulus frequencies and amplitudes. Binaural bipolar sinusoidal vestibular electric stimulation was applied to the skin overlying the mastoid processes of 10 subjects while they stood on a force plate. The position of the center of pressure(COP) and signals at the feet are obtained on an force plate, while the head and whole body center of mass(COM) was measured with motion analysis system. The stimulus conditions included eight frequencies (1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, and 2Hz) and six peak amplitudes (0.1, 0.25, 0.5, 0.7, 1 and 2mA). Each subject experienced one trial at each amplitude-frequency pair. The stimuli elicited sway in lateral plane in all subjects, as evidenced by changes in the stimulus frequency. Our results demonstrate that the vestibular system is sensitive to vestibular electric stimulation intensity changes and responds by altering the magnitude of the response accordingly.

Effects of 12-week Wearing of the Unstable Shoes on the Standing Posture and Gait Mechanics (12주간의 불안정성 신발 착용이 직립 자세 및 보행역학에 미치는 영향)

  • Park, Ki-Ran;An, Song-Yi;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.165-172
    • /
    • 2006
  • The purpose of this study was to determine effects of 12-week wearing of unstable shoe on the standing posture and gait mechanics. Nine healthy men were asked to wear the unstable shoes for 12-week and walk for 30 minute everyday. Their standing posture and gait mechanics were measured before and after treatment. Standing posture was measured for each side(anterior, posterior, lateral) for standing position. And gait analysis was measured joint angle of a right lower limb between first right heel contact and second right heel contact. Kinematic data were collected using video camera at 30 frame per seconds. Statistical analysis was paired t-test(p<.05) to compare before training with after that. A head tilt angle was significantly decreased for posterior side(p<.05). The angle of between center of line and surface was significantly decreased at midstance and take off during walking(p<.05). Ankle dorsiflexion significantly increased at heel contact2(p<.05) and ankle plantarflexion significantly increased at midstance and midswing(p<.05). The increase of ankle dorsiflexion showed that our results consisted with previous study. In conclusion, there was not large significant difference in static standing posture but joint angle of lower limb represented many changes with increasing of ankle motion during walking. These were of benefit to body by increasing leg muscle activity but it was necessary for man having a ankle problem to consider. Further studies concerning optimum outsole angle of unstable shoes are necessary.