• Title/Summary/Keyword: lateral motion

Search Result 796, Processing Time 0.025 seconds

Plantar foot pressure analysis during golf swing motion using plantar foot pressure measurement system (족저압력분포 측정장비를 이용한 골프 스윙시 족저압 분석)

  • Lee, Dong-Ki;Lee, Joong-Sook;Lee, Bom-Jin;Lee, Hun-Sik;Kim, Young-Jae;Park, Seung-Bum;Joo, Jong-Peel
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.75-89
    • /
    • 2005
  • D. K. LEE, J. S. LEE, B. J. LEE, H. S. LEE, Y. J. KIM, S. B. PARK, J. P. JOO. Plantar foot pressure analysis during golf swing motion using plantar foot pressure measurement system. Korean Journal of Sport Biomechanics, Vol. 15, No. 1, pp. 75-89, 2005. In this study, weight carrying pattern analysis and comparison method of four foot region were suggested. We used three types of club(driver, iron7, pitching wedge). This analysis method can compare between top class golfer and beginner. And the comparison data can be used to correct the swing pose of trainee. If motion analysis system, which can measure the swing speed and instantaneous acceleration at the point of hitting a ball, is combined with this plantar foot force analysis method, new design development of golf shoes to increase comfort and ball flight distance will be available. 1. Address acting, forces concentrated in rare foot regions and lateral foot of right foot. Back swing top acting, relatively high force occurred in medial forefoot region of left foot and forefoot region of right foot. Impact acting, high force value observed in the lateral rarefoot region of left foot and medial forefoot region of right foot. Finish acting, force concentration observed on the lateral region and rarefoot region of left foot. 2. Forces were increased in address of right foot with clubs length increased. All clubs, back swing top acting, high force value observed in the lateral forefoot region of right foot. All clubs, in impact, high force value observed in the lateral rarefoot region of left foot and medial forefoot region of right foot. Finish acting, force concentration observed on the rarefoot region in driver and lateral foot region in iron on left foot. 3. Right foot forces distribution were increased in address, back swing top and left foot force distribution were increased in impact, finnish

The Prediction of Hydrodynamic Forces Acting on Ship Hull in Laterally Berthing Maneuver Using CFD

  • Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.253-258
    • /
    • 2003
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to grasp very clearly the magnitude and properties of the hydrodynamic forces acting on ship hull in shallow water. In this study, numerical calculation was made to investigate quantitatively the hydrodynamic force according to the water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. Comparing the computational results to the experimental ones, the validity of the CFD method was verified. The numerical solutions evaluated the hydrodynamic force with good accuracy, and then captured the features of the flow field around the ship in detail. The transitional lateral force in a state ranging from rest to uniform motion is modeled by using the concept of the circulation.

Parameter Sensitivity Analysis of Autonomous Robot Vehicle for Trajectory Error and Friction Force (자율 주행 반송차의 궤적 오차와 마찰력에 대한 매개 변수의 민감도 해석)

  • 김동규;박기환;김수현;곽윤근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.115-126
    • /
    • 1996
  • In order to obtain the principal design data for developing the Autonomous Robot Vehicle(ARV), Sensitivity analysis on the trajectory error and friction force with respect to the dynamic parameters is performed. In the straight motion, the trajectory error has been proved to be much affected by the mass variance of the ARV while the lateral friction force is much affected by the location of the mass center. In the curved motion, the effect of mass and moment of inertia is considered importantly. In addition, the lateral offset gives more effect than the geometric dimension of the ARV on the trajectory errors and friction force.

  • PDF

Analysis of The Lateral Motion of Tractor-Trailer Combination (I) Operator/Vehicle System Model for Forward Maneuver

  • Torisu, R.;Mugucia, S.W.;Takeda, J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1137-1146
    • /
    • 1993
  • In order to analyze lateral control in the forward manuever of a tractor- trailer combination , a human operator model and a kinematic vehicle model were utilized for the operator/vehicle system. By combining the vehicle and operator models, a mathematical model of the closed-loop operator/vehicle system was formulated. A computer program was developed so as to simulate the motion of the tractor-trailer combination . In order to verify the operator/vehicle system model, the results of the field trials were compared with the simulated results. There was found to be reasonably good agreement between the two.

  • PDF

Measuring Experiment of Resistance Force on a Reciprocating Motion of Rod Type Piston (로드형 피스톤의 왕복운동 저항력 측정실험)

  • 함영복;박경민;김성동;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.486-489
    • /
    • 2003
  • To reduce lateral force of traditional plunger type piston in the swash plate type hydraulic piston pumps and motors, we have proposed rod type piston with ball joint on both ends. We have studied the theoretical reaction force on two types of piston moving in the cylinder block bore. and made an experiment for the resistance force measurement on a reciprocating motion of plunger and rod type piston, changing the test condition such as swash plate angel and supply oil pressure and so on. As a result. a rod type piston has more smaller resistance force, about 29%. than a plunger type one.

  • PDF

Running Stability Analysis on the Tail Car of KTX (KTX 후미 차량의 주행 안정성 해석)

  • Lee Seung-Il;Choi Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.350-355
    • /
    • 2005
  • The running stability and safety of a railway vehicle depends on the design characteristics and the contact condition between wheel and rail. In this paper, numerical simulations using ANSYS and ADAMS were done on the basis of the experimental observations. The results show that 0.6 Hz of the tail car motion is due to the natural mode of car combination of the KTX. The effects of the conicity of wheel and the lateral stiffness of the secondary suspension on the running stability were analyzed numerically using ADAMS/RAIL. The results also show 0.6 Hz as like the experimental observations. And the adoption of the wheel of GV40(${\lambda}=0.025$) brought the sway motion at the tail cars, but XP55(${\lambda}=0.055$) did not when the secondary lateral stiffness of the KTX was greater than 0.3 MN/m.

  • PDF

Design of Control Logics for Improving Vehicle Dynamic Stability (차량 안정성 향상을 위한 제어기 설계)

  • 허승진;박기홍;이경수;나혁민;백인호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.165-172
    • /
    • 2000
  • The VDC(Vehicle Dynamic Control) is a control system whose target is to improve stability of a vehicle under lateral motion. A lateral vehicle motion, especially on a slippery road, can lead to a hazardous situation, and the situation can even worsen by the driver`s inappropriate response. In this paper, two VDC systems, a fuzzy-based controller and an LQR-based controller have been developed. The controllers take as input the yaw rate and the sideslip angle of either body or rear wheel, and they yield the direct yaw moment signal by which the vehicle can gain stability during cornering. Simulations have been conducted to evaluate the performance of the control system. The results indicated that the controllers can successfully improve vehicle stability under potentially dangerous driving conditions.

  • PDF

Effects of Vertical and Lateral Motion on Levitation Magnet System (상하 및 좌우진동이 부상용 전자석 시스템에 미치는영향)

  • 차귀수;배동진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.18-23
    • /
    • 1992
  • Magnet core and rail of a magnetically levitated vehicle are usually made of highly conductive materials. Accordingly, eddy currents are induced in those members. Eddy currents often lead to a decrement of levitation and guidance force. This paper has calculated the decrement of both forces due to eddy current generated by magnet's vertical and lateral motion. U-shaped electromagnet and rail were chosen as amodel of 2D finite element analysis. Calculated results proved that both forces dropped significantly at high speed. Consequently, effects of eddy current should be considered in designing the magnet and control system.

  • PDF

UAV Auto Pilot System Development with GPS & Infrared Heat sensor (GPS와 적외선 열 센서를 이용한 무인항공기 자동비행 시스템 개발)

  • Choi, Jin-Won;Moon, Jung-Ho;Park, Wook-Je;Chang, Jae-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.28-33
    • /
    • 2005
  • In this paper, we developed the algorithm to control longitudinal and lateral motion of UAV(Unmanned Aerial Vehicle) with Infrared heat sensors and GPS(Global Positioning System) receiver. UAV was controlled to be flown horizontally and also turned coordinately maintaining the constant altitude. Accomplishing the flight test of UAV sevral times, we were able to develope low price controller to control bank angle for lateral motion, and also pitch angle and altitude for longitudinal motion simultaneously.

  • PDF

Design of a Two-wheeled Balancing Mobile Platform with Tilting Motion (횡방향 틸팅 기능을 갖는 이륜 밸런싱 모바일 플랫폼 설계)

  • Kim, Sangtae;Seo, Jeongmin;Kwon, SangJoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.87-93
    • /
    • 2014
  • Conventional two-wheeled balancing robots are limited in terms of turning speed because they lack the lateral motion to compensate for the centrifugal force needed to stop rollover. In order to improve lateral stability, this paper suggests a two-wheeled balancing mobile platform equipped with a tilting mechanism to generate roll motions. In terms of static force analysis, it is shown that the two-body sliding type tilting method is more suitable for small-size mobile robots than the single-body type. For the mathematical modeling, the tilting-balancing platform is assumed as a 3D inverted pendulum and the four-degrees-of-freedom equation of motion is derived. In the velocity/posture control loop, the desired tilting angle is naturally determined according to the changes of forward velocity and steering yaw rate. The efficiency of the developed tilting type balancing mobile platform is validated through experimental results.