• Title/Summary/Keyword: lateral load pattern

Search Result 68, Processing Time 0.022 seconds

A Study on Non-Axisymmetric Ring Forging Using UBET (UBET를 이용한 비축대칭 링 단조에 관한 연구)

  • 배원경;김영호;이종헌;이원희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.63-70
    • /
    • 1994
  • An upper bound elemental technique(UBET) is applied to predict forging load and die-cavity filling for non-axisymmetric ring forging. The finial product is divided into three different deformation regions. That is axisymmetric part in corner, lateral plane-strain part and shear deformation on boundaries between them. The plane-strain and axisymmetric part are combinded by building block method. Also the total energy is computered through combination of three deformation part. Experiments have been carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

  • PDF

Mechanical behavior of steel tube encased high-strength concrete composite walls under constant axial load and cyclically increasing lateral load: Experimental investigation and modeling

  • Liang Bai;Huilin Wei;Bin Wang;Fangfang Liao;Tianhua Zhou;Xingwen Liang
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.37-50
    • /
    • 2023
  • This paper presented an investigation into steel tubes encased high-strength concrete (STHC) composite walls, wherein steel tubes were embedded at the boundary elements of high-strength concrete walls. A series of cyclic loading tests was conducted to evaluate the failure pattern, hysteresis characteristics, load-bearing capacity, deformability, and strain distribution of STHC composite walls. The test results demonstrated that the bearing capacity and ductility of the STHC composite walls improved with the embedding of steel tubes at the boundary elements. An analytical method was then established to predict the flexural bearing capacity of the STHC composite walls, and the calculated results agreed well with the experimental values, with errors of less than 10%. Finally, a finite element modeling (FEM) was developed via the OpenSees program to analyze the mechanical performance of the STHC composite wall. The FEM was validated through test results; additionally, the influences of the axial load ratio, steel tube strength, and shear-span ratio on the mechanical properties of STHC composite walls were comprehensively investigated.

Experimental Study on Nonlinear Behaviors of A 1:12 Scale 10-Story Reinforced Concrete Frame with Nonseismic Details (비내진 상세를 가진 1:12축소 10층 R.C.골조의 비선형 거동에 관한 실험 연구)

  • Lee, Han-Seon;Kang, Kyi-Yong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.255-266
    • /
    • 1999
  • The objective of this experiment is to observe the elastic and inelastic behaviors of high-rise reinforced concrete frames having non-seismic details. To do this, a building frame designed according to Korean seismic code and detailed in the Korean conventional practice was selected. A 1:12 scale plane frame model was manufactured according to similitude law. A reversed lateral load test and a monotonic pushover test were performed under the displacement control. To simulate the earthquake effects, the lateral force distribution was maintained to be an inverse triangle by using a whiffle tree. From the tests, base shears, crack pattern, local rotations in the ends of critical members and the relations between interstory drift versus story shear are obtained. Based on test results, conclusions are drawn on the implications of the elastic and inelastic behaviors of a high-rise reinforced concrete frame having non-seismic details.

A Study on the Lateral Flow in Polluted Soft Soils (오염된 연약지반의 측방유동에 관한 연구)

  • 안종필;박상범
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.175-190
    • /
    • 2001
  • This study investigates the existing theoretical backgrounds in order to examine the behavior of lateral flow according to the plasticity of soils when unsymmetrical surcharge is worked on polluted soft soils by comparing and analyzing the results measured through model tests. Model tests are canied out as follows soil tank, bearing frame and bearing plate are made. By increasing unsymmetrical surcharge to the ground soils with the consistent water content and with gradually increased polluted materials at intervals, the amounts of settlement, lateral displacement and upheaval were respectively observed. In conclusion, the value of critical surcharge was expressed as q$_{cr}$=2.78$_{cu}$ which was similar to those Tschebotarioff(q$_{cr}$=3.0$_{cu}$) and Meyerhof(q$_{cr}$=(B/2H+$\pi$/2)$_{cu}$) had been proposed. The value of ultimate capacity was expressed as q$_{ult}$=4.84$_{cu}$ which was similar to that of Prandtl. The lateral flow pressure is adeQuately calculated by the eQuation(P$_{max}$=K$_o$ r H) and the maximum value of lateral flow pressure is found near O.3H of layer thickness(H) and is higher to ground surface than the ones in composition pattern, Poulos distribution pattern and softclay soils (CL, CH) which is not polluted. The stability control method used in this research followed the management diagram of Tominaga.Hashimoto, Shibata.Sekiguchi, Matsuo.Kawamura who use the amounts of plasticity displacement by lateral flow. As a result, the ultimate capacity values in the diagram {S$_v$-(Y$_m$/S$_v$)} of Matsuo.Kawamura and in the diagram {(q/Y$_m$)-q} of Shibata. Sekiguchi were smaller than in the ones of load-settlement curve (q-S$_v$).

  • PDF

Experimental behavior of eccentrically loaded R.C. short columns strengthened using GFRP wrapping

  • Elwan, S.K.;Rashed, A.S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2011
  • This paper aims to study the behavior of short reinforced concrete columns confined with external glass Fiber Reinforced Polymers (GFRP) sheets under eccentric loads. The experimental part of the study was achieved by testing 9 specimens under eccentric compression. Three eccentricity ratios corresponding to e/t = 0, 0.10, 0.50 in one direction of the column were used. Specimens were divided into three groups. The first group was the control one without confinement. The second group was fully wrapped with GFRP laminates before loading. The third group was wrapped under loading after reaching 75% of failure loads of the control specimens. The third group was investigated in order to represent the practical case of strengthening a loaded column with FRP laminates. All specimens were loaded until failure. The results show that GFRP laminates enhances both failure load and ductility response of eccentrically loaded column. Moreover, the study also illustrates the effect of confinement on the first crack load, lateral deformation, strain in reinforcement and failure pattern. Based on the analysis of the experimental results, a simple model has been proposed to predict the improvement of load carrying capacity under different eccentricity ratios. The predicted equation takes into consideration the eccentricity to cross section depth ratio, the ultimate strength of GFRP, the thickness of wrapping laminate, and the time of wrapping (before loading and under loading). A good correlation was obtained between experimental and analytical results.

An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method under Loading Patterns (격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 하중가력패턴에 따른 구조성능평가)

  • Moon, Hong Bi;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.29-37
    • /
    • 2022
  • The collapse of reinforced concrete (RC) frame buildings is mainly caused by the failure of columns. To prevent brittle failure of RC column, numerous studies have been conducted on the seismic performance of strengthened RC columns. Concrete jacketing method, which is one of the retrofitting method of RC members, can enhance strength and stiffness of original RC column with enlarged section and provide uniformly distributed lateral load capacity throughout the structure. The experimental studies have been conducted by many researchers to analyze seismic performance of seismic strengthened RC column. However, structures which have plan and vertical irregularities shows torsional behavior, and therefore it causes large deformation on RC column when subjected to seismic load. Thus, test results from concentric cyclic loading can be overestimated comparing to eccentric cyclic test results, In this paper, two kinds of eccentric loading pattern was suggested to analyze structural performance of RC columns, which are strengthened by concrete jacketing method with new details in jacketed section. Based on the results, it is concluded that specimens strengthened with new concrete jacketing method increased 830% of maximum load, 150% of maximum displacement and changed the failure modes of non-strengthened RC columns.

A study on the seismic behavior of Reinforced Concrete (RC) wall piers strengthened with CFRP sheets: A pushover analysis approach

  • Fatemeh Zahiri;Ali Kheyroddin;Majid Gholhaki
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.419-437
    • /
    • 2023
  • The use of reinforced concrete (RC) shear walls (SW) as an efficient lateral load-carrying system has gained recent attention. However, creating openings in RC shear walls is unavoidable due to architectural requirements. This reduces the walls' strength and stiffness, resulting in the development of wall piers. In this study, the cyclic behavior of RC shear walls with openings, reinforced with carbon fiber reinforced polymer (CFRP) sheets in various patterns, was numerically investigated. Finite element analysis (FEA) using ABAQUS software was employed. Additionally, the retrofitting of sub-standard buildings (5, 10, and 15-story structures) designed based on the old and new versions of the Iranian Code of Practice for Seismic-Resistant Structures was evaluated. Nonlinear static analyses, specifically pushover analyses, were conducted on the structures. The best pattern of CFRP wrapping was determined and utilized for retrofitting the sub-standard structures. Various structural parameters, such as load-carrying capacity, ductility, stress contours, and tension damage contours, were compared to assess the efficiency of the retrofit solution. The results indicated that the load-carrying capacity of the sub-standard structures was lower than that of standard ones by 57%, 69%, and 67% for 5, 10, and 15-story buildings, respectively. However, the retrofit solution utilizing CFRP showed promising results, enhancing the capacity by 10-25%. The retrofitted structures demonstrated increased yield strength, ultimate strength, and ductility through CFRP wrapping and effectively prevented wall slipping.

Concrete contribution to initial shear strength of RC hollow bridge columns

  • Kim, Ick-Hyun;Sun, Chang-Ho;Shin, Myoungsu
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.43-65
    • /
    • 2012
  • The primary objective of this study was to identify concrete contribution to the initial shear strength of reinforced concrete (RC) hollow columns under lateral loading. Seven large-scale RC rectangular hollow column specimens were tested under monotonic or cyclic lateral loads. The most important design parameter was column length-to-depth aspect ratio ranging between 1.5 and 3.0, and the other test variables included web area ratio, hollow section ratio, and loading history. The tests showed that the initial shear strength reduced in a linear pattern as the column aspect ratio increased, and one specimen tested under cyclic loading achieved approximately 83% of the shear strength of the companion specimen under monotonic loading. Also, several pioneering shear models proposed around the world, all of which were mainly based on tests for columns with solid sections, were reviewed and compared with the test results of this study, for their possible applications to columns with hollow sections. After all, an empirical equation was proposed for concrete contribution to the initial shear strength of RC hollow columns based on fundamental mechanics and the test results.

A Study on the Structure Types and Concrete Strength Zoning of Domestic Tall Apartment Buildings (국내 초고층 주상복합 건축물의 구조시스템 유형과 콘크리트 강도 조닝 분석)

  • Kim, Sang-Yeon
    • Land and Housing Review
    • /
    • v.4 no.3
    • /
    • pp.295-301
    • /
    • 2013
  • In this study, cases of domestic tall residential buildings were investigated for the structural types, numbers of stories, total heights, type of lateral load resisting systems, and zoning of concrete strength. Based on these investigation data, the structural planning pattern of tall residential building was analyzed. SRC structure is main structural types of tall residential building at the initial stage of domestic tall residential building, but RC structure is substituted for main structural types since 2005. Retaining wall system is positioned at the core part of structural plan as a lateral load resisting system. Concrete strength zoning of vertical members like columns are divided by vertical heights of lower parts, middle parts, and upper parts. Basic data of structural planning of 40stories and 60 stories residential buildings was proposed based on case investigation.

Influence of special plaster on the out-of-plane behavior of masonry walls

  • Donduren, Mahmut Sami;Kanit, Recep;Kalkan, Ilker;Gencel, Osman
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.769-788
    • /
    • 2016
  • The present study aimed at investigating the effect of a special plaster on the out-of-plane behavior of masonry walls. A reference specimen, plastered with conventional plaster, and a specimen plastered with a special plastered were tested under reversed cyclic lateral loading. The specimens were identical in dimensions and material properties. The special plaster contained an additive, which increased the adherence strength of the plaster to the wall. The amount of the additive in the mortar was adjusted based on the preliminary material tests. The influence of the plaster on the wall behavior was evaluated according to the initial cracking load, type of failure, energy absorption capacity (modulus of toughness), and crack pattern of the wall. Despite having limited contribution to the ductility, the special plaster increased the ultimate load capacity of the wall about 25%. The failure mode of the wall with special plaster resembled the plastic failure mechanism of a reinforced concrete slab in the formation of yielding lines along the wall. The deflection at failure and the modulus of toughness of the wall with special plaster were measured to be in order of 60% and 75% of the corresponding values of the reference wall.