• 제목/요약/키워드: lateral force

검색결과 1,236건 처리시간 0.031초

A lateral load pattern based on energy evaluation for eccentrically braced frames

  • Fakhraddini, Ali;Fadaee, Mohammad Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.623-632
    • /
    • 2018
  • Performance-Based Plastic Design (PBPD) method has been recently developed to evaluate the behavior of structures in different performance levels. The PBPD method utilizes a base shear force and a lateral load pattern that are estimated based on energy and yielding mechanism concepts. Using of current lateral force pattern results in weak structural members in upper stories of a structure so that the values of the story drift in these stories are larger than the target drift, particularly in high-rise buildings. Therefore, such distribution requires modifications to overcome this drawback. This paper proposes a modified lateral load pattern for steel Eccentrically Braced Frames (EBFs) based on parametric study. In order to achieve the modified load pattern, a group of 26 EBFs has been analyzed under a set of 20 earthquake ground motions. Additionally, results of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to derive the new load pattern. To prove the efficiency of present study, three EBFs as examples were designed by modified pattern and current PBPD distribution. Inelastic dynamic analyses results showed that the story drifts using modified lateral load pattern were well within the target values in comparison with current pattern in PBPD, particularly where the effect of the height is significant. The modified load pattern reduces the possibility of underdesigning in upper levels and overdesigning in lower levels of the frames.

철도차량의 탈선계수와 궤도선형간의 상관관계에 관한 실험적 연구 (The Experimental Study about a Correlation between the Derailment Coefficient of the Railway Vehicle and the Track Alignment)

  • 함영삼;이동형;권석진;서정원
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.7-12
    • /
    • 2010
  • When a vehicle is running, wheel is generating vertical and lateral force on the rail, in addition to load of vehicle, through a complicated set of motions. The derailment coefficient refers to the ratio of lateral force to vertical force(wheel load), and if the value exceeds a certain level, a wheel climbs or jumps over the rail. That's why the value is used as a criterion for running safety. Derailment coefficient of rolling stocks alters according to shape of rail track. I measured three-dimensional angular velocity and acceleration to use 3D Motion Tracker. Test result, derailment coefficient of rolling stocks and shape of rail track examined closely that have fixed relation. Specially, was proved that roll motion has the close coupling relation.

철도차량용 차륜 플레이트에서의 새로운 횡압 계측방법 (New Lateral Force Measurement Method of the Wheel Plate for Railway Vehicles)

  • 함영삼;전현규;서정원;이동형;권석진
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.621-625
    • /
    • 2012
  • Conventionally, to measure derailment coefficient of a railway wheel, strain gauges for lateral force measurement are attached to both side of the wheel. But narrow gap between railway wheel and traction motor makes it difficult to attache the strain gauges at the inner side of wheel. In this study, to overcome the hard accessibility to the strain gauge points by narrow gap, a new Wheatstone bridge connection method is presented by attaching all the strain gauges at the outer side of wheel with a new bridge connection. We evaluate the running safety of railway vehicles in accordance with railway safety regulations. The experimental results obtained shows higher sensitivity than conventional methods and the derailment coefficient measurement procedure becomes simpler.

An algorithm to simulate the nonlinear behavior of RC 1D structural members under monotonic or cyclic combined loading

  • Nouban, Fatemeh;Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.305-315
    • /
    • 2018
  • Interaction of lateral loading, combined with axial force needs to be determined with care in reinforced concrete (RC) one-dimensional structural members (1D SMs) such as beam-columns (BCs) and columns. RC 1D SMs under heavy axial loading are known to fail by brittle mode and small lateral displacements. In this paper, a macro element-based algorithm is proposed to analyze the RC 1D SMs under monotonic or cyclic combined loading. The 1D SMs are discretized into macro-elements (MEs) located between the critical sections and the inflection points. The critical sections are discretized into fixed rectangular finite elements (FRFE). The nonlinear behavior of confined and unconfined concretes and steel elements are considered in the proposed algorithm. The proposed algorithm has been validated by the results of experimental tests carried out on full-scale RC structural members. The evolution of ultimate strain at extreme compression fiber of a rectangular RC section for different orientations of lateral loading shows that the ultimate strain decreases with increasing the axial force. In the examined cases, this ultimate strain ranges from 0.0024 to 0.0038. Therefore, the 0.003 value given by ACI-318 code for ultimate strain, is not conservative and valid for the combined load cases with significant values of axial force (i.e. for the axial forces heavier than 70% of the ultimate axial force).

지하철 전동차 비정상 충격 방지를 위한 횡댐퍼에 관한 연구 (Lateral Damper of Subway Vehicle for Preventing Abnormal Impact)

  • 신유정;유원희;박준혁;허현무;전주연
    • 대한기계학회논문집A
    • /
    • 제37권1호
    • /
    • pp.17-23
    • /
    • 2013
  • 지하철 전동차에는 2 차 현가장치인 공기스프링의 횡강성 저하특성을 보강하기 위해 대차와 차체 사이에 횡댐퍼를 설치하게 되는데, 이 횡댐퍼는 주행 시 차체의 횡진동을 감소시키는 역할을 수행한다. 그러나, 횡댐퍼의 감쇠력이 저하될 경우 전동차의 주행안정성과 승차감이 함께 악화되며, 차체의 횡방향 운동이 증가되는 요인으로 작용하게 된다. 본고에서는 전동차 주행 시 비정상적으로 발생하는 충격에 대하여 그 원인을 살펴보고 해결방안을 마련하고자 횡댐퍼의 감쇠력에 따른 차체의 횡변위를 동역학 시뮬레이션을 통해 검토하였으며, 그에 따라 충격에 의한 이상진동 및 소음의 발생 유무를 파악하였다. 그로부터 충격이 발생되지 않는 적정 감쇠력을 구하고자 하였다.

Effect of lateral differential settlement of high-speed railway subgrade on dynamic response of vehicle-track coupling systems

  • Zhang, Keping;Zhang, Xiaohui;Zhou, Shunhua
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.491-501
    • /
    • 2021
  • A difference in subgrade settlement between two rails of a track manifests as lateral differential subgrade settlement. This settlement causes unsteadiness in the motion of trains passing through the corresponding area. To illustrate the effect of lateral differential subgrade settlement on the dynamic response of a vehicle-track coupling system, a three-dimensional vehicle-track-subgrade coupling model was formulated by combining the vehicle-track dynamics theory and the finite element method. The wheel/rail force, car body acceleration, and derailment factor are chosen as evaluation indices of the system dynamic response. The effects of the amplitude and wavelength of lateral differential subgrade settlement as well as the driving speed of the vehicle are analyzed. The study reveals the following: The dynamic responses of the vehicle-track system generally increase linearly with the driving speed when the train passes through a lateral subgrade settlement area. The wheel/rail force acting on a rail with a large settlement exceeds that on a rail with a small settlement. The dynamic responses of the vehicle-track system increase with the amplitude of the lateral differential subgrade settlement. For a 250-km/h train speed, the proposed maximum amplitude for a lateral differential settlement with a wavelength of 20 m is 10 mm. The dynamic responses of the vehicle-track system decrease with an increase in the wavelength of the lateral differential subgrade settlement. To achieve a good operation quality of a train at a 250-km/h driving speed, the wavelength of a lateral differential subgrade settlement with an amplitude of 20 mm should not be less than 15 m. Monitoring lateral differential settlements should be given more emphasis in routine high-speed railway maintenance and repairs.

모드의 방향이 불분명한 건축구조물의 지진해석 (Seismic Analysis of Building Structures with Ambiguous Modal Direction)

  • 김태호;이동근;김대곤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.513-520
    • /
    • 2002
  • This study is for seismic analysis of building structures with ambiguous modal direction This case is revealed symmetrical building structure or the structure that isn't coincided building axis with physical axis. Seismic analysis-time history analysis, response spectrum analysis and lateral force procedure-is carried out. It is concluded that analysis method for the structure with ambiguous modal direction don't suitable for lateral force procedure. It is recommended to use the CQC method for combining modal responses to the individual components and the SRSS rule for combining responses to the two horizontal components are of nearly equal intensities.

  • PDF

다 경간 압축재의 하중-진동수 관계 (Load-Frequency Relationships of Continuous Compression Members)

  • 이수곤;김순철;임동혁
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.335-340
    • /
    • 1998
  • The apparently different physical problems of lateral vibration and elastic stability of a linear member are limiting cases of a single phenomenon, the more general expression being the mode of vibration with end thrust. For a single-span beam-column, it is generally known that the square of the frequency of lateral vibration is approximately linearly related to compressive axial force. In this paper the relationship between the frequency and axial force of multi-span compression members is investigated by means of the finite element method.

  • PDF

자율 주행 반송차의 궤적 오차와 마찰력에 대한 매개 변수의 민감도 해석 (Parameter Sensitivity Analysis of Autonomous Robot Vehicle for Trajectory Error and Friction Force)

  • 김동규;박기환;김수현;곽윤근
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.115-126
    • /
    • 1996
  • In order to obtain the principal design data for developing the Autonomous Robot Vehicle(ARV), Sensitivity analysis on the trajectory error and friction force with respect to the dynamic parameters is performed. In the straight motion, the trajectory error has been proved to be much affected by the mass variance of the ARV while the lateral friction force is much affected by the location of the mass center. In the curved motion, the effect of mass and moment of inertia is considered importantly. In addition, the lateral offset gives more effect than the geometric dimension of the ARV on the trajectory errors and friction force.

  • PDF