• Title/Summary/Keyword: lateral current

Search Result 557, Processing Time 0.025 seconds

A Study on Moment Gradient Factor for Inelastic Lateral-Torsional Buckling of Stepped I-Beam Subjected to Uniformly Distributed Load and End Moment (연속경간 하중을 받는 I형 스텝보의 비탄성 횡-비틀림 좌굴강도산정을 위한 모멘트 구배계수 연구)

  • Son, Ji-Min;Park, Jong-Sup
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • This paper investigates inelastic lateral-torsional buckling of stepped beams subjected to uniformly distributed load and end moments. A three-dimensional finite-element program ABAQUS (2007) and a regression program MINITAB(2006) were used to analytically develop new design equation for singly and doubly stepped beams with simple boundary condition. The flanges of the smaller cross-section in the stepped beams were fixed at 30.48 by 2.54 cm, whereas the width and thickness of the flanges of the larger cross-section varied. The web thickness and height of the beams were kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beam are considered with analytical parameters. Two groups of 27 cases and 36 cases, respectively, were analyzed for doubly and singly stepped beams in the inelastic buckling range. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. The distributions of residual stress of the cross-section is same as shown in Pi and Trahair (1995) and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The comparisons between results from proposed equations and the results from finite element analyses were presented in this paper. The maximum differences of two results are of 13% for the doubly stepped beam and 10% for the singly stepped beam. The proposed equations definitely improve current design methods for the inelastic lateral-torsional buckling problem and increase efficiency in building and bridge design.

Calcaneo-stop Procedure for Management of Pediatric Symptomatic Flexible Flatfoot (증상이 동반된 소아 유연성 편평족 치료에서의 Calcaneo-stop 술식)

  • Lee, Kang;Nam, Young Joon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.19 no.4
    • /
    • pp.176-180
    • /
    • 2015
  • Purpose: The aim of the current study is to report on the clinical and radiographic results after calcaneo-stop procedure in Korean children with symptomatic flexible flatfoot. Materials and Methods: Twenty-two children suffering pain along the medial aspect of midfoot with flexible flatfoot whose symptoms did not improve with conservative measures and therefore underwent calcaneo-stop procedure were identified retrospectively. Clinically, American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot scale and visual analogue scale (VAS) were evaluated. Radiographically, standing anteroposterior and lateral radiographs of the foot and Saltzman's alignment views were taken and talonavicular coverage angle, lateral talo-first metatarsal angle, and hindfoot alignment angles were measured and analyzed. Results: Clinically, AOFAS ankle-hindfoot scale improved from $70.3{\pm}5.6$ to $97.3{\pm}2.5$ and VAS improved from $6.4{\pm}1.6$ to $0.2{\pm}0.4$. Radiographically, talonavicular coverage angle improved from $28.3^{\circ}{\pm}12.3^{\circ}$ to $10.9^{\circ}{\pm}8.1^{\circ}$, lateral talo-first metatarsal angle improved from $-19.3^{\circ}{\pm}9.0^{\circ}$ to $-2.4^{\circ}{\pm}8.1^{\circ}$, and hindfoot alignment angle improved from valgus $11.9^{\circ}{\pm}10.0^{\circ}$ to $3.5^{\circ}{\pm}4.3^{\circ}$ at minimum 2-year follow-up. No complications occurred postoperatively. Conclusion: Calcaneo-stop procedure is a simple and very effective procedure for management of pediatric symptomatic flexible flatfoot that does not respond to conservative treatment.

Application of Direct Analysis Method Considering Initial Imperfection Limitation (초기변형 허용값을 고려한 직접해석법 적용)

  • Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.487-495
    • /
    • 2013
  • As the first step to suggest effective ways of using direct analysis method considering current situations of construction fields in Korea, analytical approach is used to verify direct analysis method which adapts initial imperfection limitation of Korean specification of building construction. The main analytical variables are size of frames, axial load ratio, axial load distribution, value of notional loads, location of notional loads, and applied method of notional loads. The results show that the use of initial imperfection limitation of Korean specification, L/700 is suitable, and the recommendable method to use direct analysis method is applied notional loads based on L/700 as minimum lateral load at each story, even if B2 is less than 1.5 and lateral loads exist.

Characteristics of Balance and Muscle Activation responded to Dynamic Motions in Anterior-Posterior and Medial-Lateral Directions (전후방 및 내외측 방향의 동적 움직임에 따른 균형 및 근육 활성도 특성)

  • Kim, ChoongYeon;Jung, HoHyun;Lee, BumKee;Jung, Dukyoung;Chun, Kyeong Jin;Lim, Dohyung
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.212-217
    • /
    • 2013
  • Falling is one of the major public problems to the elderly, resulting in limitations of daily living activities. It can be induced by the functional loss of the balance ability and muscle strength in the elderly. It has been, however, not well investigated to suggest an effective methodology improving the balance ability and muscle strength for the prevention of the falling due to lack of information about the characteristics of the balance and muscle activations responded to the dynamic motions. The aim of the current study is, therefore, to identify the characteristics of the balance and muscle activations responded to the dynamic motions in Anterior-Posterior(AP) and Medial Lateral(ML) directions. For that, a motion capture system with eight infrared cameras, surface electromyogram system and Wii Fit system with a customized variable unstable base were used and kinematic and kinetic data obtained from the systems were analyzed for five healthy male($24.8{\pm}3.3years$, $177.4{\pm}2.0cm$, $73.9{\pm}12.9kg$, $23.5{\pm}4.0kg/m$). The results showed that the characteristics of the balance and muscle activations were differently responded to between the dynamic motions in Anterior-Posterior(AP) and Medial Lateral(ML) directions. These findings may indicate that customized dynamic motions should be applied to the training of the balance ability and muscle strength for the effective prevention of the falling. This study may be meaningful to providing basic information to establish a guideline improving effectively the balance ability and muscle strength.

The Design of CMOS-based High Speed-Low Power BiCMOS LVDS Transmitter (CMOS공정 기반의 고속-저 전압 BiCMOS LVDS 구동기 설계)

  • Koo, Yong-Seo;Lee, Jae-Hyun
    • Journal of IKEEE
    • /
    • v.11 no.1 s.20
    • /
    • pp.69-76
    • /
    • 2007
  • This paper presents the design of LVDS (Low-Voltage-Differential-Signaling) transmitter for Gb/s-per-pin operation. The proposed LVDS transmitter is designed using BiCMOS technology, which can be compatible with CMOS technology. To reduce chip area and enhance the robustness of LVDS transmitter, the MOS switches of transmitter are replaced with lateral bipolar transistor. The common emitter current gain($\beta$) of designed bipolar transistor is 20 and the cell size of LVDS transmitter is $0.01mm^2$. Also the proposed LVDS driver is operated at 1.8V and the maximum data rate is 2.8Gb/s approximately In addition, a novel ESD protection circuit is designed to protect the ESD phenomenon. This structure has low latch-up phenomenon by using turn on/off character of P-channel MOSFET and low triggering voltage by N-channel MOSFET in the SCR structure. The triggering voltage and holding voltage are simulated to 2.2V, 1.1V respectively.

  • PDF

Prediction and Verification of Lateral Joining Strength for Tapered-Hole Clinching using the Taguchi Method (다구찌 기법을 이용한 이종재료 경사 홀 클린칭 접합부 수평 방향 접합강도 예측 및 검증)

  • Kang, D.S.;Park, E.T.;Tullu, A.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Fiber metal laminates (FMLs) are well known for improved fatigue strength, better impact resistance, superior damage tolerance and slow crack growth rate compared to traditional metallic materials. However, defects and loss of strength of a composite material can occur due to the vertical load from the punch during the joining with a dissimilar material using a conventional clinching method. In the current study, tapered-hole clinching was an alternative process used to join Al 5052 and FMLs. The tapered hole was formed in the FML before the joining. For the better understanding of static and dynamic characteristics, a clinched joining followed by a tensile-shear test was numerically simulated using the finite element analysis. The design parameters were also evaluated for the geometry of the tapered hole by the Taguchi method in order to improve and compare the lateral joining strength of the clinched joint. The influence of the neck thickness and the undercut were evaluated and the contribution of each design parameter was determined. Then, actual experiments for the joining and tensile-shear test were conducted to verify the results of the numerical simulations. In conclusion, the appropriate combination of the design parameters can improve the joining strength and the cross-sections of the tapered-hole clinched joint formed in the actual experiments were in good agreement with the results of the numerical simulations.

Numerical Analysis on Behavior of Cantilever Retaining Walls (캔틸레버 옹벽의 거동에 대한 수치해석적 연구)

  • Jang, In-Seong;Jeong, Chung-Gi;Kim, Myeong-Mo
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.75-86
    • /
    • 1996
  • Current methods to estimate the earth pressure for retaining wall analysis are based on Rankine or Coulomb approaches, in which the soil mass behind wall is assumed to reach to failure state with sufficient lateral movements. Some of recent research works carried out by field measurements reveal that the active earth. pressures by Ranking or Coulomb method are underestimated. It means that the lateral movements of wall and soil would not be mobilized enough to reach the failure state. In this study, the finite element method with Drucker -Prager model for soil is employed to investigate the behavior of concrete cantile,tier retaining wall, together with the influence of inclined backfill. The results indicate that the earth pressures on the retaining wall are strongly related to the mobilized lateral movements of wall and soil and that Ranking and Coulomb methods underestimate the resultant earth pressures and the increasing effect on earth pressure by inclined backfill. Based on this study, a simplified method to determine to earth pressures on cantilever retaining wall with horizontal backfill is proposed.

  • PDF

A Study on the Drift Phenomenon of a Ship on the Waterway near the Breakwater of Busan and Gamcheon Port (부산항과 감천항 방파제 인접 항로에서 선체에 작용하는 횡압류 현상에 관한 연구)

  • Lee Yun-Sok;Kim Chol-Seong;Kong Gil-Young;Im Nam-Kyun;Lee Chung-Ro
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.1-7
    • /
    • 2005
  • In order to secure the traffic safety especially in the entrance waterway of harbour, it is important that the breakwater and the port facilities should be designed properly considering ship-handling difficulty and traffic flow. In this study, the lateral force acting on ship hull under the external force(wind, current, wave) is investigated quantitatively for the container ship approaching to the Busan and Gamcheon breakwater. The relation of ship-handling difficulty to the breakwater and the arrangement of ship's routine are examined based on the lateral force under the external force. Some of reviews to secure traffic safety on the design of breakwater are discussed.

Numerical Evaluation of Lateral-Torsional Buckling Strength in I-section Plate Girder Bridges (I-단면 플레이트거더교의 횡비틀림 좌굴강도의 해석적 평가)

  • Park, Yong Myung;Hwang, Soon Young;Park, Jae Bong;Hwang, Min Oh;Choi, Byung H.
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.321-330
    • /
    • 2009
  • This paper presents numerical analysis results for the lateral-torsional buckling (LTB) strength of steel I-girder bridges. Current Korean and AASHTO design specifications for LTB consider the buckling strength of a single girder with both its ends constrained. The I-girder bridges are composed of more than one girder, and the girders are interconnected with intermediate cross-beams or cross-frames. Therefore, it should be required to evaluate the effects of cross-beam stiffness and the interactionof girders on LTB strength. It is also necessary to consider the effects of transverse web stiffeners on LTB strength. By considering these parameters, a series of four-girder systemswere numerically modeled using 3D shell elements to estimate the LTB strength while considering initial imperfections and residual stresses.

Seismic Performance Evaluation of Hexagonal Blocks Infilled RC Frames (육각형 블록을 이용한 채움벽 RC 골조의 채움벽 내진성능평가)

  • Chang, Kug Kwan;Seo, Dae Won;Ko, Tae Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.116-124
    • /
    • 2011
  • RC frames with unreinforced masonry infiledl walls are common in worldwide. Since infilled walls are normally considered as non-structural elements, their presence is often ignored by engineers. In this study, to improve the seismic performance of masonry walls, hexagonal block was developed and the influence of masonry infilled wall on the seismic performance of reinforced concrete(RC) frames that were designed in accordance with current code provisions without the consideration of earthquake loadings are investigated. Two 1/2 scale, single story, single bay, frame specimens were tested. The parameters investigated included that the strength of infilled wallls with respect to that of the lateral load history. The experimental results indicate that infilled walls can significantly improve the lateral stiffness and strength of RC frames. The lateral loads developed by the infilled frame specimen is higher than that of the bare frame. It also indicates that infilled walls can be potentially used to improve the performance of existing nonductile frames. For this purpose. methods should be developed to avoid irreparable damage and catastrophic failure.