• Title/Summary/Keyword: lateral confined effect

Search Result 59, Processing Time 0.022 seconds

Lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression

  • Hou, Chongchi;Zheng, Wenzhong
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.239-251
    • /
    • 2022
  • The use of lateral reinforcement in confined concrete columns can improve bearing capacity and deformability. The lateral responses of lateral reinforcement significantly influence the effective confining pressure on core concrete. However, lateral strain-axial strain model of concrete columns confined by lateral reinforcement has not received enough attention. In this paper, based on experimental results of 85 concrete columns confined by lateral reinforcement under axial compression, the effect of unconfined concrete compressive strength, volumetric ratio, lateral reinforcement yield strength, and confinement type on lateral strain-axial strain curves was investigated. Through parameter analysis, it indicated that with the same level of axial strain, the lateral strain slightly increased with the increase in the unconfined concrete compressive strength, but decreased with the increase in volumetric ratio significantly. The lateral reinforcement yield strength had slight influence on lateral strain-axial strain curves. At the same level of lateral strain, the axial strain of specimen with spiral was larger than that of specimen with stirrup. Furthermore, a lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression was proposed by introducing the effects of unconfined concrete compressive strength, volumetric ratio, confinement type and effective confining pressure, which showed good agreement with the experimental results.

Uniaxial Compression Behavior of High-Strength Concrete Confined by Low-Volumetric Ratio Lateral Ties

  • Hong Ki-Nam;Han Sang-Hoon
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.843-852
    • /
    • 2005
  • Presently, test results and stress-strain models for poorly confined high-strength columns, more specifically for columns with a tie volumetric ratio smaller than $2.0\%$, are scarce. This paper presents test results loaded in axial direction for square reinforced concrete columns confined by various volumetric ratio lateral ties including low-volumetric ratio. Test variables include concrete compressive strength, tie yield strength, tie arrangement type, and tie volumetric ratio. Local strains measured using strain gages bonded to an acryl rod. For square RC columns confined by lateral ties, the confinement effect was efficiently improved by changing tie arrangement type from Type-A to Type-B. A method to compute the stress in lateral ties at the concrete peak strength and a new stress-strain model for the confined concrete are proposed. Over a wide range of confinement parameters, the model shows good agreement with stress-strain relationships established experimentally.

주변이 RC로 구속된 조적조 벽체의 내진성능향상에 관한 실험적 연구 (Experimental Study for Higher Seismic Performance of Confined Masonry Wall System)

  • 김경태;서수연;윤승조;요시무라코지;성기태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.5-8
    • /
    • 2004
  • In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns in improving the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. A total of four one-half scale specimens are tested under repeated lateral loads. Specimens are tested to failure with increasing maximum lateral drifts while a vertical axial load was applied and maintained constant. The constant vertical axial stresses applied are 0, 0.84 and 1.80MPa, while the amount of reinforcements in horizontal and vertical directions are $0\%,\;0.08\%\;and\;0.18\%$ respectively. Test results obtained for each specimen include cracking patterns, load-deflection data, and strains in reinforcement and walls in critical locations. Analysis of test data showed that above parameters generate a considerable effect on the seismic performance of confined concrete block masonry walls.

  • PDF

연속섬유 거푸집으로 보강된 압축부재의 역학적 특성에 관한 연구 (A Study on the Mechanical Characteristics of Compression Member Confined the Cast Frame Using Continuous Fiber Mesh)

  • 고훈범
    • 한국건축시공학회지
    • /
    • 제2권4호
    • /
    • pp.99-104
    • /
    • 2002
  • Recently, the continuous fiber materials has become more important materials to repair and to reinforce concrete structural members. Continuous fiber meshes are effective for shear and confining reinforcement and provide excellent durability when combined with high strength mortar The purpose of this study is to verify the relationship between concrete strength and the ductility of inner concrete confined laterally by continuous fiber meshes. For this study, Experimental studies were conducted by compressive members using the cast frame of high strength mortar and continuous fiber meshes. Therefore, the result shows that compressive strength and ductility has improved according to the amount of the fiber meshes, and that the lateral confined effect of members with 3- or 4-axis mesh arrangement is bigger than that of members with 2-axis mesh. These data have to be used to verify the characteristic of concrete structure members reinforced continuous fiber mesh.

하중이력에 따른 콘크리트 압축부재의 CFS 보강효과에 관한 연구 (Confining Effect of CFS on Concrete Compressive Members under Load Actions)

  • 배주성;김경수;김재욱;고영표
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.705-708
    • /
    • 1999
  • Advanced composite materials such as carbon fiber, aramid, and glass fiber sheet, are widely used recently to strengthening existing reinforced concrete structures. The purpose of this paper was to investigate the mechanical characteristics of concrete compressive members confined with carbon fiber sheet and evaluate the efficiency of the strengthening under load actions. Uniaxal compression tests of concrete compressive members confined with carbon fiber sheet were experimentally used to develop a relationship between the axial stresses and the lateral stresses. The resulting axial and lateral strains were used to determine the confinement effect of concrete compressive members.

  • PDF

횡구속 콘크리트의 압축 응력-변형률 모델 : Part II. 사각단면 부재 (Stress-Strain Model for Laterally Confined Concrete : Part II. Rectangular Sectional Members)

  • 선창호;정혁창;김익현
    • 한국지진공학회논문집
    • /
    • 제21권1호
    • /
    • pp.59-67
    • /
    • 2017
  • Due to a lack of the hoop action of lateral reinforcements the effective confining force in rectangular sections reduces compared to circular ones. Therefore, the stress-strain model obtained from the experimental data with circular sections overestimates the lateral confinement effect in rectangular sections, which evaluates seismic safety margin of overall structural system excessively. In this study experiments with laterally-confined square sections have been performed and the characteristic values composing stress-strain model have been analyzed. With introduction of section coefficients, in addition, the new unified stress-strain model applicable to square sections as well as circular ones has been proposed.

Effectiveness of different confining configurations of FRP jackets for concrete columns

  • Moretti, Marina L.
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.155-168
    • /
    • 2019
  • This paper presents the results of an experimental investigation on the compressive strength of small scale concentrically axially loaded fiber-reinforced polymer (FRP) confined plain concrete columns, with cylinder concrete strength 19 MPa. For columns with circular (150-mm diameter) and square (150-mm side) cross sections wrapped with glass- and carbon-FRP sheets (GFRP and CFRP, respectively) applied with dry lay-up the effect of different jacket schemes and different overlap configurations on the confined characteristics is investigated. Test results indicate that the most cost effective jacket configuration among those tested is for one layer of CFRP, for both types of sections. In square sections the location of the lap length, either in the corner or along the side, does not seem to affect the confined performance. Furthermore, in circular sections, the presence of an extra wrap with FRP fibers parallel to the column's axis enhances the concrete strength proportionally to the axial rigidity of the FRP jacket. The recorded strains and the distributions of lateral confining pressures are discussed. Existing design equations are used to assess the lateral confining stresses and the confined concrete strength making use of the measured hoop strains.

외측 횡 구속된 콘크리트 공시체의 내진 거동 (Seismic Behavior of Concrete Cylinders Reinforced by Outside Lateral Hoops)

  • 최은수;김병화;신재관;이도형
    • 한국지진공학회논문집
    • /
    • 제18권1호
    • /
    • pp.45-51
    • /
    • 2014
  • This paper investigates experimentally the confinement effect on concrete. For this purpose, outside lateral reinforcement members made of stainless steel and GFRP were employed. Then, uniaxial compressive tests on concrete cylinders incorporating the members were conducted. A total of 30 cylinder specimens, specifically, 6 unconfined specimens, 12 specimens confined by stainless steel and 12 specimens confined by GFRP, were fabricated. The failure patterns of both unconfined and confined specimens were assessed and discussed based on experimental results. The results proved that the maximum stress and corresponding strains of the cylinders confined using the proposed hoops are increased in comparison with those of the unconfined. This supports that the current work can be used for retrofitting concrete members and structures and thus may lead to increased stability of such structures.

Size Effect of Axial Compressive Strength of CFRP Confined Concrete Cylinders

  • Akogbe, Romuald-Kokou;Liang, Meng;Wu, Zhi-Min
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.49-55
    • /
    • 2011
  • The main objective of this investigation is to study size effect on compressive strength of CFRP confined concrete cylinders subjected to axial compressive loading. In total 24 concrete cylinders with different sizes were tested, small specimens with a diameter of 100 mm and a height of 200 mm, medium specimens with a diameter of 200 mm and a height of 400 mm, and big specimens with a diameter of 300 mm and a height of 600 mm. The lateral confining pressure of each specimen is the same and from that hypothesis the small specimens were confined with one layer of CFRP, medium and big specimens were performed by two and three layers of CFRP respectively. Test results indicate a significant enhancement in compressive strength for all confined specimens, and moreover, the compressive strengths of small and medium specimens are almost the same while a bit lower for big specimens. These results permit to conclude that there is no size effect on compressive strength of confined specimens regardless of cylinder dimension.

프리캐스트 콘크리트 세그먼트의 구속효과를 고려한 비선형 해석 (Nonlinear Analysis considered Confinement Effect of Precast Concrete Segment)

  • 이헌민;김태훈;박재근;김영진;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.305-308
    • /
    • 2008
  • 이 연구에서는 최근 연구가 활발히 진행되고 있는 조립식 프리캐스트 세그먼트 콘크리트 교각공법에서 사용되어지는 기성 콘크리트 세그먼트의 횡 방향 구속철근에 의한 구속효과에 대한 연구를 수행하였다. 일반적으로 횡방향 구속철근에 의한 콘크리트의 구속효과는 구속효과계수에 의하여 결정되며 구속효과계수는 유효 구속 콘크리트 단면적과 구속 콘크리트 단면적의 비로서 결정된다. 유효 구속 콘크리트 단면적은 횡 방향 구속철근간의 간격에서 발생하는 Arching action에 의하여 결정되어지며 구속 콘크리트 단면적은 교각의 주철근비에 의하여 결정되어진다. 그러나 프리캐스트 콘크리트 세그먼트의 경우 세그먼트 상, 하부에 존재하는 피복을 고려하여야 한다. 즉 최상단 및 최하단에 배근되는 횡방향 구속철근에서 상, 하부 콘크리트 표면의 피복까지의 구속효과를 고려하여야 한다. 이 연구에서는 이에 대한 고려 방법을 제안하였다. 제안한 프리케스트 구속효과를 고려한 콘크리트 재료 모델을 RCAHEST에 적용하여 그 타당성을 검증하였다.

  • PDF