• Title/Summary/Keyword: latent heat material

Search Result 157, Processing Time 0.066 seconds

An Experimental Study on the Heat Dissipation Characteristics of the Natural Convection Type Radiator by using the PCMs (PCM물질을 적용한 자연대류형 방열기의 방열특성에 관한 실험적 연구)

  • Sung, Dae-Hoon;Kim, Min-Jun;Kim, Joung-Ha;Yun, Jae-Ho;Kim, Woo-Seung;Peck, Jong-Hyeon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1155-1160
    • /
    • 2008
  • In the present study investigated the heat dissipation characteristics of the natural convection type radiator by using the latent heat from a solid-liquid PCM(Phase Change Material). Total radiator volume size is $423{\times}295{\times}83\;mm$ and PCM tank size is $398{\times}270{\times}26\;mm$. The objective was elapsed time lower than maximum operating temperature. Experimental condition, in order to study the effects of the phase-change phenomenon, carried out the various mass flow rate, input electric power, and heat of fusion temperature of two type PCMs. For the above experimental conditions, the cooling performance by using the latent heat showed that heat absorption rate performs for about 3 hours from using PCM $38^{\circ}C$. However, cooling performance by using PCM $50^{\circ}C$ showed higher than surface temperature of heater block because of heat of fusion.

  • PDF

Thermal Characteristics of $H_2O$-NaOH Mixtures Type PCM for the Low Temperature Storage of Food and Medical Products (식.의약품 저온 저장을 위한 $H_2O$-NaOH 혼합형 잠열재의 냉축 열특성)

  • Song, Hyun-Kap;Ro, Jeong-Geun;Moon, Young-Mo
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • Mixtures type PCM, $H_2O$-NaOH that has relatively large capacity of the latent heat and long duration of phase change temperature was developed and experimentally analyzed for the low temperature storage of the food and medical products. The results could be summarized as follows; 1. Borax as nucleating agent and acrylic polymer as thickening agent were added to $H_2O$ to prevent the supercooling and phase separation. 2. Phase change (solid$\leftrightarrows$liquid) duration of $H_2O$ added with NaOH was prolonged longer 50% than that of pure $H_2O$. 3. Phase change temperature of the latent heat material, $H_2O$-NaOH was $1.5\sim2^{\circ}C$ the maximum latent Heat was 279 kJ/kg at the NaOH addition of 1.3 wt.%. 4. The specific heat of $H_2O$-NaOH at the solid and liquid state was increased in proportion to the wt.% of NaOH, when NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the specific heat of the solid state was increased from 3.19 kJ/kg to 5.84 kJ/kg and that of liquid state from 7.8 kJ/kg to 10.28 kJ/kg. 5. When NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the total heat storage capacity composed of sensible and latent heat was $313\sim331.3$ kJ/kg and the maximum heat storage capacity was occurred at NaOH addition of 1.30 wt. %.

Low Temperature Latent Heat Storage Material of Cooling Characteristics According to Concentration of TMA (TMA 농도에 따른 저온잠열축열물질의 냉각특성)

  • Kim, Chang-Oh;Chung, Hyun-Ho;Chung, Nak-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • The ice storage system uses water for low temperature latent heat storage. However, a refrigerator capacity are increased and COP are decreased due to supercooling of water in the course of phase change from liquid to solid. This study investigates the cooling characteristics of the TMA-water clathrate compound including TMA (Tri-methyl-amine, $(CH_3)_3N$) of 20~25 wt% as a low temperature latent heat storage material. The results showed that the phase change temperature are increased and the supercooling degree and the specific heat are decreased according to the weight concentration of TMA increased. Especially, the clathrate compound containing TMA 25wt% has the average phase change temperature of $5.8^{\circ}C$ and the supercooling degree of $8.0^{\circ}C$, retention time of liquid phase for 651sec and specific heat of 3.499 kJ/kgK in the cooling process. This expressed good than different concentration of TMA cooling characteristic. Like this, to apply TMA 25wt%-water clathrate compound is determined by advantageous as the low temperature latent heat storage material.

Experiment and Property Study of Ondol Panel Based on Phase Change Material (PCM을 이용한 온돌패널의 실험 및 특성연구)

  • Yoon, Doo-Han;Choi, Bong-Su;Hong, Hi-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.122-125
    • /
    • 2006
  • This paper deals with the Ondol, Korean under-floor heating system using latent heat storage materials. It has been recognized that the heating system using the latent heat storage materials are economically efficient and comfortable. For the comparison and analysis to the data of the existing experiment, a repetitive experiment makes sure the ability of Ondol panel.

  • PDF

A Study on the Characteristic of Heat Transfer of PCM(Phase Change Material) at the Simultaneous Charging and Discharging Condition (동시 축·방열 조건에서 PCM의 열전달 특성에 관한 연구)

  • Lee, Donggyu;Park, Sechang;Chung, Dong-yeol;Kang, Cheadong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.305-310
    • /
    • 2016
  • A thermal storage systems was designed to correspond to the temporal or quantitative variation in the thermal energy demand, and most of its heat is stored using the latent and sensible heat of the heat storage material. The heat storage method using latent heat has a very complex phenomenon for heat transfer and thermal behavior because it is accompanied by a phase change in the course of heating/cooling of the heat storage material. Therefore, many studies have been conducted to produce an experimentally accessible as well as numerical approach to confirm the heat transfer and thermal behavior of phase change materials. The purpose of this study was to investigate the problems encountered during the actual heat transfer from an internal storage tank through simulation of the process of storing and utilizing thermal energy from the thermal storage tank containing charged PCM. This study used analysis methods to investigate the heat transfer characteristics of the PCM with simultaneous heating/cooling conditions in the rectangular space simulating the thermal storage tank. A numerical analysis was carried out in a state considering natural convection using the ANSYS FLUENT(R) program. The result indicates that the slope of the liquid-solid interface in the analysis field changed according to the temperature difference between the heating surface and cooling surface.

A System Development of Thermal Energy Storage at High Temperatures (고온 축열 시스템의 개발에 관한 연구)

  • Hong, Seong-Ahn;Park, Won-Hoon;Choe, Hyung-Joon
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 1988
  • Heat transfer phenomena in a high-temperature heat storage unit were investigated using molten salts. Carbonate salt, an equimolar mixture of $Li_2CO_3$ and $K_2CO_3$, which melts at $505^{\circ}C$ with a latent heat of 82 cal/g, was selected as the most promising latent heat storage material based on its low cost and excellent thermophysical properties at moderately high temperatures. It was also found that nitrate salts were good candidates of sensible heat storage materials. For the carbonate salt to be utilized commercially, however, several means of enhancing thermal recovery must be explored by promoting heat conduction through the solid salt formed during the heat discharge period. These would be achieved by the additions of aluminum screens and wool, and stainless fins. Finally, experimental results of moving boundary of phase change were well compared with predictied values obtained from the approximate solution.

  • PDF

Consideration on the T-history Method for Measuring Heat of Fusion of Phase Change Materials (PCM의 잠열측정을 위한 T-history법에 대한 고찰)

  • 박창현;최주환;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1223-1229
    • /
    • 2001
  • Though conventional calorimetry methods such as differential scanning calorimetry (DSC) and differential thermal analysis (DTA) are used generally in measuring heat of fusion, T-history method has the advantages of a simple experimental apparatus and no requirements of sampling process, which is particularly useful for measuring thermal properties of inhomogeneous phase change materials (PCMs) in sealed tubes. However, random criteria (a degree of supercooling) used in selecting the range of latent heat release and neglecting sensible heat during the phase change process can cause significant errors in determining the heat of fusion. In the present study, it was shown that a 40% discrepancy exists between the original T-history and the present methods when analyzing the same experimental data. As a result, a reasonable modification to the original T-history method is proposed.

  • PDF

Improvement of the T-history Method to Measure Heat of Fusion for Phase Change Materials

  • Hong, Hi-Ki;Park, Chang-Hyun;Choi, Ju-Hwan;Peek, Jong-Hyeon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.1
    • /
    • pp.32-39
    • /
    • 2003
  • Though conventional calorimetry methods such as differential scanning calorimetry and differential thermal analysis are used generally in measuring heat of fusion, T-history method has advantages of a simple experimental apparatus and no requirements of sampling process, which is particularly useful for measuring thermophyical properties of in-homogeneous phase change materials in sealed tubes. However, the degree of supercooling used in selecting a range of latent heat release and neglecting sensible heat during the phase change process can cause significant errors in determining the heat of fusion. In the present study, it was shown that a 40% discrepancy exists between the original T-history and the present methods when analyzing the same experimental data. As a result, a reasonable modification to the original T-history method is proposed.

Hydration Heat Properties of Low Heat Concrete using GGBS (슬래그를 사용한 저발열 콘크리트의 수화열 특성)

  • Yoo, Jo-Hyeong;Kim, Woo-Jae;Hong, Seok-Beom
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.234-235
    • /
    • 2013
  • In order to evaluate the properties of reduced heat of hydrationof concrete mixed with slag, in the present study, we have evaluated by experimental and analytical characteristics of heat of hydration of concrete using the latent heat material and slag.

  • PDF

A Study on the Cooling Characteristics and Subcooling Improvement of TMA-Water Clathrate Compound (TMA-물계 포접화합물의 냉각특성과 과냉각 개선에 대한 연구)

  • Park, Seul-Hyun;Kim, Chang-Oh
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.85-92
    • /
    • 2014
  • This study carried out experimental on the cooling characteristics of clathrate compound including TMA(Tri-Methyl-Amine ; $(CH_3)_3N$) as a low temperature latent heat storage material. And additive was used for subcooling improvement of TMA-water clathrate compound. The conclusion of above study is as following ; TMA 25wt%-water clathrate compound is shown stable phase change and low subcooling degree. The subcooling was improved in the case ethanol($CH_3CH_2OH$) 0.5wt% is added to TMA 25wt%-water clathrate compound.