• Title/Summary/Keyword: latent heat

Search Result 641, Processing Time 0.031 seconds

Development of Solar Energy-Underground Latent Heat Storage System for Greenhouse Heating (온실(溫室) 난방(暖房)을 위한 태양열(太陽熱)-지하(地下) 잠열(潛熱) 축열(蓄熱) 시스템 개발(開發))

  • Song, H.K.;Ryou, Y.S.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.3
    • /
    • pp.211-221
    • /
    • 1994
  • In this study, to maximize the solar energy utilization for greenhouse heating during the winter season, solar energy-underground latent heat storage system was constructed, and the thermal performance of the system has been analyzed to obtain the basic data for realization of greenhouse solar heating system. The results are summarized as follows. 1. $Na_2SO_4{\cdot}10H_20$ was selected as a latent heat storage material, its physical properties were stabilized and the phase change temperature was controlled at $13{\sim}15^{\circ}C$. 2. Solar radiation of winter season was the lowest value in December, and Jinju area was the highest and the lowest value was shown in Jeju area. 3. The minimum inner air temperature of greenhouse with latent heat storage system(LHSS) was $7.0{\sim}7.5^{\circ}C$ higher than that of greenhouse without LHSS and was $7.0{\sim}11.2^{\circ}C$ higher than the minimum ambient air temperature. 4. Greenhouse heating effect of latent heat storage system was getting higher according to the increase of solar radiation and was not concerned with the variation of minimum ambient air temperature. 5. The relative humidity of greenhouse with latent heat storage system was varied from 50 to 85%, but that of greenhouse without LHSS was varied from 30 to 93%. 6. The heating cost of greenhouse with solar energy-latent heat storage system was about 24% of that with the kerosene heating system.

  • PDF

Experimental Study on the Generation of Hydration Heat of Binder using Latent Heat Material (잠열재를 사용한 결합재의 수화발열 특성에 관한 실험적 연구)

  • Kim, Yong-Ro;Kim, Do-Su;Khil, Bae-Su;Kim, Ook-Jong;Lee, Do-Bum
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.103-107
    • /
    • 2009
  • It is necessary to develop a new technology for effectively controlling thermal crack caused hydration heat according to the increasing construction of large size massive concrete structures such as mat foundation of high-rise building. Therefore, to develop a new technology for reducing hydration heat of large size massive concrete in this study, it was investigated hydration heat generation properties of binder using latent heat materials. As a test result, it was confirmed that latent heat materials were advanced on the reduction of hydration heat and control of thermal crack. It is expected to be applied as the excellent technology on the management of hydration heat and thermal crack in large size massive concrete structures.

Computer Simulation for Heat Transfer Analysis of Latent Heat Storage Units (잠열축열요소의 열전달에 관한 컴퓨터 시뮬레이션)

  • Ryou, Y.S.;Song, H.K.;Cho, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.4
    • /
    • pp.336-343
    • /
    • 1992
  • In this study, to obtain basic information for the design of a latent heat storage system, (1) the cylindrical type and the rectangular type of latent heat storage elements were designed, (2) the finite element method was adopted for the prediction of temperature profile of phase change material in heating and cooling process, and (3) experiments were performed to verify the numerical solutions, and then (4) the optimum size of latent heat storage units was predicted by the computer simulation. The results could be summarized as follows : (1) In cooling process, the predicted temperatures of latent heat storage units by computer simulation were in good agreement with measured. (2) The effective diameter of cylindrical element was observed to be 28 mm and the effective thickness of rectangular element was observed to be 21 mm.

  • PDF

Shape-Stabilized Phase Change Materials : Frozen Gels From Polypropylene and n-Paraffin for Latent Heat Storage

  • Ko, Jae-Wang;Son, Tae-Won
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.80-81
    • /
    • 2010
  • We prepared polymer-PCM gels such as prepared frozen gel from polypropylene and n-Paraffin for thermal storage and release materials, their basic properties and possible applications especially in latent heat storage. The preparation methods are used to melting method and absorption method respectively. The composition and properties of prepared frozen gels from polypropylene and n-Paraffin were observed by DSC, FT-IR spectra, ARES and Elemental analysis. We can prepare frozen gels in different temperature for latent heat storage materials as controlling composition of phase change material as well as using different incorporating phase change materials. These frozen gels can be used to latent heat storage materials for several applications.

  • PDF

A Study on the Heat pump - Latent Heat Storage System for the Greenhouse Heating (그린하우스 난방을 위한 열펌프-잠열축열 시스템 연구)

  • 송현갑;노정근;박종길;강연구;김현철
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.147-156
    • /
    • 1998
  • It is desirable to use the renewable energy for the greenhouse heating in winter season, it make possible not only to save fossil fuel and conserve green environment but also to promote the quality of agricultural products and reduce the agricultural production cost. In this study the heat pump - PCM latent heat storage system has been developed to use the natural energy as much as possible for the thermal environment control of greenhouse. The coefficient of performance (COP) of the heat pump system was 3~4 with the ambient temperature ranging from 8$^{\circ}C$ to -8$^{\circ}C$, and greenhouse heating effect of the heat pump-PCM latent heat storage system on the basis of the ambient temperature was about 12-15$^{\circ}C$.

  • PDF

Modeling of a Greenhouse Equipped with Latent Heat Storage System (잠열축열 장치를 갖춘 온실의 난방 열 특성 예측모형개발)

  • Ro, J.G.;Song, H.K.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.3
    • /
    • pp.51-60
    • /
    • 2001
  • A greenhouse equipped with latent heat storage system was built to obtain various thermal properties, such as greenhouse air temperature, soil surface temperature, energy flow in latent heat storage, etc., which could be used in validation of greenhouse numerical model to be developed in this study. This numerical model expressed with Newton-Raphson method was programed by C-language and utilized to simulate greenhouse thermal behavior. Greenhouse air temperature and soil surface temperature predicted by the greenhouse model developed in this study were very close to the measured data obtained through almost 3 years of experiment. Therefore, it is concluded that the greenhouse model developed and verified by measured data could be utilized for simulating various thermal behaviors of greenhouses equipped with latent heat storage system to be used for energy saving purposes.

  • PDF

Latent Heat of Water Vapor of Rough Rice, Brown Rice, White Rice and Rice Husk

  • Lee, Hyo-Jae;Kim, Dong-Chul;Kim, Oui-Woung;Han, Jae-Woong;Kim, Woong;Kim, Hoon
    • Journal of Biosystems Engineering
    • /
    • v.36 no.4
    • /
    • pp.267-272
    • /
    • 2011
  • The latent heat of vaporization in rough rice, brown rice, white rice and rice hull was calculated by Clausius-Clapeyron equation, which does not require complex constraints as in Othmer method. Equilibrium relative humidity and ratio of the latent heat of vaporization with ln$P_{\upsilon}$ and ln$P_S$ were estimated with moisture contents ranging from 10% (d.b.) to 36% (d.b.) with 2% (d.b.) increment and temperatures ranging from $10^{\circ}C$ to $50^{\circ}C$ with $2.5^{\circ}C$ increment. An empirical equation for calculating the latent heat of vaporization in rice was developed as a function of moisture content and temperature. The equation agreed well with the calculated results. The ratio for latent heat of vaporization were the greatest for white rice while they were similar among rough rice, brown rice and rice hull.

Thermal Energy Characteristics and Simulation Model Development for Greenhouse Heating System with Heat Pump and Latent Heat Storage (열펌프와 잠열축열을 이용한 온실 난방시스템의 열특성과 시뮬레이션 모델개발)

  • 노정근;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.26 no.6
    • /
    • pp.553-562
    • /
    • 2001
  • The greenhouse heating system with heat pump and latent heat storage was built for development of simulation model and validation. The computer simulation model for the system to predict temperature of air, soil surface and cover film in the greenhouse were developed and its validity was justified by actual data. From the analysis of experimentally measured and the simulation output, following results were obtained. 1. The expected values of inside air temperature for the greenhouse with a heat pump and a latent heat storage system were very much close to the experimental values at the error range of 1.0$\^{C}$. 2. The expected values of soil surface temperature fur the geenhouse with a heat pump and a latent heat storage system were very much close to the experimental values at the error range of 1.0$\^{C}$. 3. The expected values of thermal energy flow fur the greenhouse with a heat pump and a latent heat storage system were very much close to the experimental values at the error range of 167.2kJ/m$^2$h. 4. Heat lass value of day time was found to be larger than that of night time as much as 1.11 time. 5. At day time. the inside air temperature was shown to be higher than the set point of 7.0$\^{C}$. At night time, the inside air temperature was controlled in order to maintain higher temperatures than the set point.

  • PDF

Floor Heating Characteristics of Latent Heat Storage-Bioceramic Ondal - Focused on Historical research and Expermental Analysis - (잠열 축열-바이오 세라믹 온돌의 난방 특성 - 온돌의 역사적 고찰 및 실험적 분석을 중심으로 -)

  • Sone, Hyun-Kap;Ryon, Young-Sun
    • Solar Energy
    • /
    • v.15 no.1
    • /
    • pp.13-28
    • /
    • 1995
  • In this study, the history of Korean traditional Ondol was investigated and the latent heat materials and bioceramics were selected to develop the latent heat storage-bioceramics Ondol system based on the Korean traditional Ondol(sensible heat storage type), and the thermal characteristics of Ondol were analyzed experimentally The results could be summarized as follows; 1. Korean traditional Ondol has been originated in "Whaduk" which had been utilized continuously for about $2{\times}10^6$ years from the Old Stone Age to the Bronze Age, and Korean traditional Ondol using in these days has been utilized for about 976 years from the Koryu Dynasty to the Modern Ages. 2. $Na_2SO_4{\cdot}10H_2O(SSD)$ was selected as latent heat material for the latent heat storage Ondol. 3. Ondol unit was filled with the latent heat material of 0.63 kg and the dimension of Ondol unit was $400mm{\times}400mm{\times}27mm(width{\t\imes}depth{\times}height)$. 4. The comfortable surface temperature($23{\sim}29^{\circ}C$) of the latent heat storage Ondol was lasted 5 hours at the room temperature of $16{\sim}18^{\circ}C$, whereas that of sensible heat storage Ondol was lasted only 1.0 hours in the same conditions. 5. For the thermal effect of bioceramics, the Ondol air temperature i.n case of bioceramics treatment on the pannel was higher than that of without bioceramics treatment.

  • PDF

An Experimental Study on the Latent Heat Storage Using Phase Change Material Within Cylindrical Can (원통형 용기에서의 잠열 축열에 관한 실험적 연구)

  • Go, Deuk-Yong;Choe, Heon-O;Kim, Hyo-Bong
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.23-30
    • /
    • 1989
  • Heat transfer phenomena of solidification process of the phase change material within cylindrical can is studied experimentally. N-Eicosane paraffin wax is used for phase change material and its melting temperature is 309.8 K. In order to achieve higher heat transfer rate of latent heat storage apparatus, fins in made of copper are used in the cylindrical can. If there are fins in cylindrical can, we can know that the inward latent heat energy in paraffin can be effectively transfered to cooling water than if finless.

  • PDF