• Title/Summary/Keyword: late blight of tomato

Search Result 66, Processing Time 0.039 seconds

Genetic variation of Phytophthora infestans by RAPD analysis

  • Lee, Yun-Soo;Jeong young Song;Kim, Nam-Kyu;Nam Moon;Park, Hye-Jin;Kim, Hong-Gi
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.116.2-117
    • /
    • 2003
  • Late blight, caused by Phytophthora infestans, is one of the most destructive disease on potato and tomato cultivation. To analysis genetic diversity P. infeatans isolates were collected from potato and tomato fields in Korea. These pathogens contained both Al and A2 mating type with metalaxyl-resistant and sensitive isolates. Polymorphisms showed base on RAPD (Random Amplified Polymorphic DNA) in both potato and tomato isolates of P. infestans. Cluster analysis showed high level genetic variation in potato isolates of P. infestans than tomato isolates. P. infestans isolates were observed genetic diversity among them but not grouped among isolates related mating type and metalaxyl response. These results exhibited that P. infestans isolates showing genetic difference among them were distributed in Korea.

  • PDF

Isolation and Identification of Myxobacteria KR025 and Searching of Their Bioactive Compounds (점액세균 KR025의 분리 동정 및 생리활성물질의 탐색)

  • 김병섭;안종웅;조광연
    • Korean Journal Plant Pathology
    • /
    • v.14 no.4
    • /
    • pp.345-349
    • /
    • 1998
  • Fifty isolates of myxobacteria were isolated from soils from several areas in Korea during 1996-1997 and bioactivity against plant pathogenic fungi of these isolates was examined. A myxobacterial isolate KR025 showed good antifungal activities against Pyricularia oryzae, Cryphonectria parasitica, Colletotrichum lagenarium, and C. gloeosporioides but did not against Rhizoctonia solani, Fusarium oxysporum and Pythium ultimum. The bacterium was identified as Myxococcus fulvus based on morphological and physiological characteristics. Antifungal substances were extracted from culture broth and bacterial cell of Myxococcus fulvus KR025 by ethyl acetate. Antifungal substance of Myxothiazole (100 ${\mu}{\textrm}{m}$/ml) produced by Myxococcus fulvus KR 025 controlled 97.0% rice blast, tomato late blight, wheat leaf rust, and barley powdery mildew and showed 45.0 and 82.6% disease control of rice sheath blight and cucumber gray model, respectively.

  • PDF

Rpi-blb2 Gene-Mediated Late Blight Resistance in Plants

  • Oh, Sang-Keun
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.26-26
    • /
    • 2015
  • Phytophthora infestans is the causal agent of potato and tomato late blight, one of the most devastating plant diseases. P. infestans secretes effector proteins that are both modulators and targets of host plant immunity. Among these are the so-called RXLR effectors that function inside plant cells and are characterized by a conserved motif following the N-terminal signal peptide. In contrast, the effector activity is encoded by the C terminal region that follows the RXLR domain. Recently, I performed in planta functional profiling of different RXLR effector alleles. These genes were amplified from a variety of P. infestans isolates and cloned into a Potato virus X (PVX) vector for transient in planta expression. I assayed for R-gene specific induction of hypersensitive cell death. The findings included the discovery of new effector with avirulence activity towards the Solanum bulbocastanum Rpi-blb2 resistance gene. The Rpi-blb2 encodes a protein with a putative CC-NBS-LRR (a coiled-coil-nucleotide binding site and leucine-rich repeat) motif that confers Phytophthora late blight disease resistance. We examined the components required for Rpi-blb2-mediated resistance to P. infestans in Nicotiana benthamiana. Virus-induced gene silencing was used to repress candidate genes in N. benthamiana and to assay against P. infestans infections. NbSGT1 was required for disease resistance to P. infestans and hypersensitive responses (HRs) triggered by co-expression of AVRblb2 and Rpi-blb2 in N. benthamiana. RAR1 and HSP90 did not affect disease resistance or HRs in Rpi-blb2-transgenic plants. To elucidate the role of salicylic acid (SA) in Rpi-blb2-mediated resistance, we analyzed the response of NahG-transgenic plants following P. infestans infection. The increased susceptibility of Rpi-blb2-transgenic plants in the NahG background correlated with reduced SA and SA glucoside levels. Furthermore, Rpi-blb2-mediated HR cell death was associated with $H_2O_2$, but not SA, accumulation. SA affects basal defense and Rpi-blb2-mediated resistance against P. infestans. These findings provide evidence about the roles of SGT1 and SA signaling in Rpi-blb2-mediated resistance against P. infestans.

  • PDF

Antifungal Activity of the Methanol Extract of Myristica malabarica Fruit Rinds and the Active Ingredients Malabaricones Against Phytopathogenic Fungi

  • Choi, Nam-Hee;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Lee, Sun-Og;Choi, Jae-Eul;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.317-321
    • /
    • 2008
  • In a search for plant extracts with in vivo antifungal activity for plant diseases, we found that the methanol extract of Myristica malabarica fruit rinds effectively suppressed the development of several plant diseases. The methanol extract exhibited potent 1-day protective activity against rice blast, tomato late blight, wheat leaf rust and red pepper anthracnose. It also showed 7-day and 4-day protective activities against the plant diseases. Three antifungal resorcinols were isolated from the methanol extract of M. malabarica fruit rinds and identified as malabaricones A(MA), B(MB), and C(MC). Inhibitory activity of the three resorcinols against mycelial growth of plant pathogenic fungi varied according to compound and target species. All three compounds effectively reduced the development of rice blast, wheat leaf rust and red pepper anthracnose. In addition, MC was highly active for reducing the development of tomato late blight. This is the first report on the antifungal activities of malabaricones against filamentous fungi.

Excavation of 3-amino-2-benzylimino-1,3-thiazolines, Selective Fungicide against Phytophthora infestans and Magnaporthe grisea (토마토 역병균과 벼 도열병균에 선택적인 살균활성의 3-아미노-2-벤질이미노-1,3-티아졸린 유도체 발굴)

  • Hahn, Hoh-Gyu;Nam, Kee-Dal;Shin, Dong-Yoon;Choi, Gyung-Ja;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.3
    • /
    • pp.165-171
    • /
    • 2006
  • A new 3-amino-1,3-thiazoline chemical library was synthesized through parallel synthetic technology and in vivo antifungal activity of the compounds were investigated against the typical 6 plant diseases (100 ppm). The characteristic feature of these derivatives was that both a benzyl moiety in C-2 imino and an amino group in C-3 of 2-imino-1,3-thiazoline scaffold were substituted in the molecule respectively. Some compounds showed antifungal activity with selectivity against tomato late blight and rice blast. The fungitoxicity would be attributed to 3,4-dichlorophenyl moiety of the benzyl group.

Anti-oomycete Activity of Furanocoumarins from Seeds of Psoralea corylifolia against Phytophthora infestans

  • Shim, Sang-Hee;Kim, Jin-Cheol;Jang, Kyoung-Soo;Choi, Gyung-Ja
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.103-107
    • /
    • 2009
  • In the course of a searching natural antifungal compounds from plant seeds, we found that the methanol extract of Psoralea corylifolia seeds showed potent control efficacy against tomato late blight caused by Phytophthora infestans and wheat leaf rust Puccinia recondita. Under bioassay-guided purification, we isolated two furanocoumarins, psoralen and isopsoralen, with anti-oomycete activity against P. infestans. By 1-day protective application, both compounds strongly reduced the disease development of P. infestans on tomato seedlings, but hardly controlled development of leaf rust on wheat seedlings. This is the first report on the anti-oomycete activity of P. corylifolia as well as that of psoralen and isopsoralen.

Antifungal Activities of Bacillus thuringiensis Isolates on Barley and Cucumber Powdery Mildews

  • Choi, Gyung-Ja;Kim, Jin-Cheol;Jang, Kyoung-Soo;Lee, Dong-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2071-2075
    • /
    • 2007
  • Fourteen Bacillus thuringiensis isolates having both insecticidal activity and in vitro antifungal activity were selected and tested for in vivo antifungal activity against tomato late blight, wheat leaf rust, tomato gray mold, and barley powdery mildew in growth chambers. All the isolates represented more than 70% disease control efficacy against at least one of four plant diseases. Specifically, 12 isolates exhibited strong control activity against barley powdery mildew. Under glasshouse conditions, four (50-02, 52-08, 52-16, and 52-18) of the isolates also displayed potent control efficacy against cucumber powdery mildew. To our knowledge, this is the first report of B. thuringiensis isolates that have disease control efficacy against powdery mildew of barley and cucumber as well as insecticidal activity.

Synthesis and Phytopathogenic Activities of Isopropylphenyl Derivatives (Isopropylphenyl 유도체들의 합성과 식물병원균에 대한 항균활성)

  • Jang, Do-Yeon;Choi, Kyoung-Gil;Lee, Byung-Ho;Kim, Tae-Jun;Jung, Bong-Jin;Choi, Won-Sik
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.178-186
    • /
    • 2007
  • 42 compounds such as ester, sulfonyl ester, phosphoyl ester and ether derivatives of 4-isopropylphenol (I) and 2-isopropylphenol (II) were synthesized. These derivatives were identified by IR, GC/MS and $^{1}H-NMR$ spectra. Their in vitro antifungal activities were tested against 10 plant pathogenic fungi. Among them, several compounds showed potent in vitro antifungal activity. The selected compounds showing potent in vitro antifungal activity were tested for their in vivo antifungal acitvities against 5 plant diseases such as rice blast, rice sheath blast, cucumber anthracnose, cucumber gray mold and tomato late blight. As a result, 2-isopropylphenyl piperonyloate (II-7a) showed a potent in vivo antifungal activity against cucumber anthracnose and tomato late blight, 4-isopropylphenyl 4-methoxybenzenesulfonate (I-6b) effectively inhibited the development of rice blast.

In Vivo Antifungal Activities of Surfactants against Tomato Late Blight, Red Pepper Blight, and Cucumber Downy Mildew (계면활성제를 이용한 역병과 오이 노균병 방제)

  • Yu, Ju-Hyun;Jang, Kyoung-Soo;Kim, Heung-Tae;Kim, Jin-Cheol;Cho, Kwang-Yun;Choi, Gyung-Ja
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.339-343
    • /
    • 2004
  • Anionic surfactants such as sodium dioctyl sulfosuccinate (SDSS) and sodium dodecylbenzene sulfonate (NaDBS) and a nonionic surfactant, polyoxyethylene oleyl ether (OE-7) were tested for their protective, curative, and persistent activities on tomato late blight (TLB, Phytophthora infestans), red pepper blight (RPB, P. capsici), and cucumber downy mildew (CDM, Pseudoperonospora cubensis). They exhibited a strong protective activity on TLB, RPB, and CDM. Among them, $NaDBS\;(500\;{\mu}g/ml)$ showed the most in vivo antifungal activities(1-day protective activity) with control values of 99%, 100%, and 85% against TLB, RPB, and CDM, respectively. However, the three surfactants represented a weak disease controlling efficacy on TLB, RPD, and CDM in a 1-day curative application. SDSS and NaDBS exhibited a good persistent activities on TLB and RPB. Especially, NaDBS, at $500\;{\mu}g/ml$, showed control values of more than 88% on TLB and RPB in a 7-day protective application. The results indicate SDSS and NaDBS have a potential for the control of TLB, RPB, and CDM in the fields.

In vitro and in vivo antifunal activaties of derivatives of thymol( I ) and carvacrol(II) againt phytopathogenic fungi (Thymol과 Carvacrol 유도체들의 합성과 식물병원균에 대한 항균활성)

  • Choi, Won-Sik;Jung, Chan-Jin;Jang, Do-Yun;Cha, Kyoung-Min;Um, Dae-Yong;Kim, Tae-Jun;Jung, Bong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.237-248
    • /
    • 2006
  • Forty one compounds such as ester, sulfonyl ester, carbamate, ether and phosphoyl ester derivatives of thymol(I) and carvacrol(II) were synthesized. These derivatives were identified by IR, GC/MS and $^1H$-NMR spectra. Their antifungal activities were tested against various plant pathogenicfugi. Among them, several compounds were showed potent in vivo antifungal activities. The selected compounds showing in vitro antifungal activities were tested in vivo antifungal activities aganint 5 plant diseases such as rice blast, rice sheath blight, tomato late blight, cucumber anthracnose, and cucumber gray mold. As a result, 2-isopropyl-5-methylphenylacetate(I-1a) effectively suppressed the development cucumber gray mold and rice blast. Methyl(2-isopropyl-5-methylphenoxy)acetate(I-6d) and ethyl 4-(5-methyl-2-isopopylphenoxy)crotonate(I-7d) also showed potent in vivo antifungal actively againt rice sheath blight and tomato late blight, respectively.