• Title/Summary/Keyword: last-level cache

Search Result 16, Processing Time 0.026 seconds

Energy-Efficient Last-Level Cache Management for PCM Memory Systems

  • Bahn, Hyokyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.188-193
    • /
    • 2022
  • The energy efficiency of memory systems is an important task in designing future computer systems as memory capacity continues to increase to accommodate the growing big data. In this article, we present an energy-efficient last-level cache management policy for future mobile systems. The proposed policy makes use of low-power PCM (phase-change memory) as the main memory medium, and reduces the amount of data written to PCM, thereby saving memory energy consumptions. To do so, the policy keeps track of the modified cache lines within each cache block, and replaces the last-level cache block that incurs the smallest PCM writing upon cache replacement requests. Also, the policy considers the access bit of cache blocks along with the cache line modifications in order not to degrade the cache hit ratio. Simulation experiments using SPEC benchmarks show that the proposed policy reduces the power consumption of PCM memory by 22.7% on average without degrading performances.

The Need of Cache Partitioning on Shared Cache of Integrated Graphics Processor between CPU and GPU (내장형 GPU 환경에서 CPU-GPU 간의 공유 캐시에서의 캐시 분할 방식의 필요성)

  • Sung, Hanul;Eom, Hyeonsang;Yeom, HeonYoung
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.9
    • /
    • pp.507-512
    • /
    • 2014
  • Recently, Distributed computing processing begins using both CPU(Central processing unit) and GPU(Graphic processing unit) to improve the performance to overcome darksilicon problem which cannot use all of the transistors because of the electric power limitation. There is an integrated graphics processor that CPU and GPU share memory and Last level cache(LLC). But, There is no LLC access rules between CPU and GPU, so if GPU and CPU processes run together at the same time, performance of both processes gets worse because of the contention on the LLC. This Paper gives evidence to prove the need of the Cache Partitioning and is mentioned about the cache partitioning design using page coloring to allocate the L3 Cache space only for the GPU process to guarantee GPU process performance.

Improving Reliability of the Last Level Cache with Low Energy and Low Area Overhead (낮은 에너지 소모와 공간 오버헤드의 Last Level Cache 신뢰성 향상 기법)

  • Kim, Young-Ung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • Due to the technology scaling, more transistors can be placed on a cache memories of a processor. However, processors become more vulnerable to the soft error because of the highly integrated transistors, and consequently, the reliability of the cache memory must consider seriously at the design space level. In this paper, we propose the reliability improving technique which can be achieved with low energy and low area overheads. The simulation experiments of the proposed scheme shows over 95.4% of protection rate against the soft error with only 0.26% of performance degradations. Also, It requires only 2.96% of extra energy consumption.

Adaptive Writeback-aware Cache Management Policy for Lifetime Extension of Non-volatile Memory

  • Hwang, Sang-Ho;Choi, Ju Hee;Kwak, Jong Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.514-523
    • /
    • 2017
  • In this paper, we propose Adaptive Writeback-aware Cache management (AWC) to prolong the lifetime of non-volatile main memory systems by reducing the number of writebacks. The last-level cache in AWC is partitioned into Least Recently Used (LRU) segment and LRU using Dirty block Precedence (DP-LRU) segment. The DP-LRU segment evicts clean blocks first for giving reuse opportunity to dirty blocks. AWC can also determine the efficient size of DP-LRU segment for reducing the number of writebacks according to memory access patterns of programs. In the performance evaluation, we showed that AWC reduced the number of writebacks up to 29% and 46%, and saved the energy of a main memory system up to 23% and 49% in a single-core and multi-core, respectively. AWC also reduced the runtime by 1.5% and 3.2% on average compared to previous cache managements for non-volatile main memory systems, in a single-core and a multi-core, respectively.

Core-aware Cache Replacement Policy for Reconfigurable Last Level Cache (재구성 가능한 라스트 레벨 캐쉬 구조를 위한 코어 인지 캐쉬 교체 기법)

  • Son, Dong-Oh;Choi, Hong-Jun;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.1-12
    • /
    • 2013
  • In multi-core processors, Last Level Cache(LLC) can reduce the speed gap between the memory and the core. For this reason, LLC has big impact on the performance of processors. LLC is composed of shared cache and private cache. In computer architecture community, most researchers have mainly focused on the management techniques for shared cache, while management techniques for private cache have not been widely researched. In conventional private LLC, memory is statically assigned to each core, resulting in serious performance degradation when the workloads are not fairly distributed. To overcome this problem, this paper proposes the replacement policy for managing private cache of LLC efficiently. As proposed core-aware cache replacement policy can reconfigure LLC dynamically, hit rate of LLC is increases drastically. Moreover, proposed policy uses 2-bit saturating counters to improve the performance. According to our simulation results, the proposed method can improve hit rates by 9.23% and reduce the access time by 12.85% compared to the conventional method.

Management Technique of Energy-Efficient Cache and Memory for Mobile IoT Devices (모바일 사물인터넷 디바이스를 위한 에너지 효율적인 캐시 및 메모리 관리 기법)

  • Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.27-32
    • /
    • 2021
  • This paper proposes an energy-efficient cache and memory management scheme for next-generation IoT devices. The proposed scheme adopts a low-power phase-change memory (PCM) as the main memory of IoT devices, aims at minimizing the write traffic to PCM, which is vulnerable to write operations. Specifically, when a cache block of the last-level cache memory is flushed to main memory, the cache block that causes less writes to PCM is preferentially replaced by tracking the modifications of each cache line that constitutes the cache block. In addition, by considering the reference bit of the cache block and the dirty bit of the cache lines, our scheme reduces the energy consumption without degrading the memory system performances. Through simulations using SPEC benchmarks, it is shown that the proposed scheme reduces the write traffic to PCM by 34.6% on average and the power consumption by 28.9%, without memory performance degradations.

Virtual Machine Scheduling for Multicores Considering Effects of Shared On-chip Last Level Cache Interference (공유 말단 캐시에서의 간섭의 영향을 고려한 멀티코어 프로세서를 위한 가상 머신 스케줄링)

  • Kim, Shin-gyu;Choi, Chanho;Eom, Hyeonsang;Yeom, Heon Y.
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.134-136
    • /
    • 2012
  • 클라우드 컴퓨팅 서비스 시장이 성장하면서, 서비스 제공자들은 전력 사용량 감소와 서비스 수준을 보장하는 등의 여러 가지 문제와 맞딱드리게 되었다. 이런 문제에 대한 원인 중 하나는 자원 효율성을 높이기 위해 도입한 가상머신 기반의 서버 통합 정책이다. 현재의 가상머신 기술들은 아직까지 완벽한 격리수준을 제공하지 못하기 때문에, 같은 노드에 배치된 가상머신들은 자원을 공유하면서 서로 간에 간섭을 일으키게 된다. 본 연구에서는 가상머신끼리 공유하는 자원 중 프로세서의 말단 캐시(Last-level Cache, LLC)에서의 간섭을 최대한 줄여서 성능을 극대화하기 위한 방법을 제안한다.

Performance and Energy Optimization for Low-Write Performance Non-volatile Main Memory Systems (낮은 쓰기 성능을 갖는 비휘발성 메인 메모리 시스템을 위한 성능 및 에너지 최적화 기법)

  • Jung, Woo-Soon;Lee, Hyung-Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.245-252
    • /
    • 2018
  • Non-volatile RAM devices have been increasingly viewed as an alternative of DRAM main memory system. However some technologies including phase-change memory (PCM) are still suffering from relatively poor write performance as well as limited endurance. In this paper, we introduce a proactive last-level cache management to efficiently hide a low write performance of non-volatile main memory systems. The proposed method significantly reduces the cache miss penalty by proactively evicting the part of cachelines when the non-volatile main memory system is in idle state. Our trace-driven simulation demonstrates 24% performance enhancement, compared with a conventional LRU cache management, on the average.

An Interference Matrix Based Approach to Bounding Worst-Case Inter-Thread Cache Interferences and WCET for Multi-Core Processors

  • Yan, Jun;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.131-140
    • /
    • 2011
  • Different cores typically share the last-level cache in a multi-core processor. Threads running on different cores may interfere with each other. Therefore, the multi-core worst-case execution time (WCET) analyzer must be able to safely and accurately estimate the worst-case inter-thread cache interference. This is not supported by current WCET analysis techniques that manly focus on single thread analysis. This paper presents a novel approach to analyze the worst-case cache interference and bounding the WCET for threads running on multi-core processors with shared L2 instruction caches. We propose to use an interference matrix to model inter-thread interference, on which basis we can calculate the worst-case inter-thread cache interference. Our experiments indicate that the proposed approach can give a worst-case bound less than 1%, as in benchmark fib-call, and an average 16.4% overestimate for threads running on a dual-core processor with shared-L2 cache. Our approach dramatically improves the accuracy of WCET overestimatation by on average 20.0% compared to work.

Improving Energy Efficiency and Lifetime of Phase Change Memory using Delta Value Indicator

  • Choi, Ju Hee;Kwak, Jong Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.330-338
    • /
    • 2016
  • Phase change memory (PCM) has been studied as an emerging memory technology for last-level cache (LLC) due to its extremely low leakage. However, it consumes high levels of energy in updating cells and its write endurance is limited. To relieve the write pressure of LLC, we propose a delta value indicator (DVI) by employing a small cache which stores the difference between the value currently stored and the value newly loaded. Since the write energy consumption of the small cache is less than the LLC, the energy consumption is reduced by access to the small cache instead of the LLC. In addition, the lifetime of the LLC is further extended because the number of write accesses to the LLC is decreased. To this end, a delta value indicator and controlling circuits are inserted into the LLC. The simulation results show a 26.8% saving of dynamic energy consumption and a 31.7% lifetime extension compared to a state-of-the-art scheme for PCM.