• Title/Summary/Keyword: laser surface melting

Search Result 93, Processing Time 0.158 seconds

Effect of Pore Structures of a Ti-49.5Ni (at%) Alloy on Bone Cell Adhesion (Ti-49.5Ni (at%)합금의 다공성 구조가 뼈 세포 흡착에 미치는 영향)

  • Im, Yeon-Min;Choi, Jung-Il;Khang, Dong-Woo;Nam, Tae-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.66-70
    • /
    • 2012
  • Ti-Ni alloys are widely used in numerous biomedical applications (e.g., orthodontics, cardiovascular science, orthopaedics) due to their distinctive thermomechanical and mechanical properties, such as the shape memory effect, superelasticity and low elastic modulus. In order to increase the biocompatibility of Ti-Ni alloys, many surface modification techniques, such as the sol-gel technique, plasma immersion ion implantation (PIII), laser surface melting, plasma spraying, and chemical vapor deposition, have been employed. In this study, a Ti-49.5Ni (at%) alloy was electrochemically etched in 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF electrolytes to modify the surface morphology. The morphology, element distribution, crystal structure, roughness and energy of the surface were investigated by scanning electron microscopy (SEM), energy-dispersive Xray spectrometry (EDS), X-ray diffractometry (XRD), atomic force microscopy (AFM) and contact angle analysis. Micro-sized pores were formed on the Ti-49.5Ni (at%) alloy surface by electrochemical etching with 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF. The volume fractions of the pores were increased by increasing the concentration of the HF electrolytes. Depending on the HF concentration, different pore sizes, heights, surface roughness levels, and surface energy levels were obtained. To investigate the osteoblast adhesion of the electrochemically etched Ti-49.5Ni (at%) alloy, a MTT test was performed. The degree of osteoblast adhesion was increased at a high concentration of HF-treated surface structures.

Thermal Expansion and Contraction Characteristics of Continuous Casting Carbon Steels (연속주조용 탄소강에서 상변화에 따른 열팽창 및 수축 거동)

  • Kim, H.C.;Lee, J.H.;Kwon, O.D.;Yim, C.H.
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.137-143
    • /
    • 2003
  • The air gap between the metal and mold, formed by shrinkage during solidification, causes surface and subsurface cracks in the continuous casting process. Molten crack on the surface might also occur due to improper heat transfer between them. In order to compensate the air gap in mold design, the thermal contraction is an essential factor. In this study, the thermal contraction and expansion behaviors were examined from the ($\alpha$ and pearlite)/${\gamma}$ to ${\gamma}$/$\delta$ transformations in continuous casting steels by the commercial dilatometer and the self- assembled dilatometer with laser distance measurement. It was found that the thermal contraction and expansion behaviors were very dependant on the phase transformation of the ${\gamma}$/$\delta$ as well as ($\alpha$ and pearlite)/${\gamma}$. The sudden volume change from $\delta$ to ${\gamma}$ which might cause cracks in the continuous casting process, was observed on cooling just below the melting temperature by the self-assembled dilatometer.

Comparative Study of the Ablation Rates of Er: YAG Laser Irradiation on Dentin and Enamel (Er:YAG 레이저를 이용한 법랑질과 상아질의 절삭율 연구)

  • Kim, Kun-A;Ahn, Yong-Woo;Ko, Myung-Yun;Park, June-Sang
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.1
    • /
    • pp.131-140
    • /
    • 2005
  • The purpose of this study was to examine the ablation rate of Er: YAG laser irradiation on dentin and enamel and to observe the microscopic structures of cavities formed after ablation of enamel and dentin in using a bur and cavities formed after ablation using laser. Er:YAG laser irradiated at 200 mJ, 250mJ, 300mJ at the frequency of 20Hz, 15Hz. The following results were obtained : 1. The ablation rate of dentin groups at power of 3 W-6 W was about $1.103{\sim}2.639mm^3/sec$ and there were no significant differences between power of 4.5 W$\sim$6 W. 2. The ablation rate of enamel groups at power of 3 W-6 W was about $0.413{\sim}0.969mm^3/sec$ and there were no significant differences between power of 4 W$\sim$6 W. 3. With SEM examination of the cavity surface treated with the conventional high speed bur revealed relatively flat appearance almost covered with a debris like smear layer. 4. With SEM examination of the lased surface of dentin groups revealed no smear layer and no debris and openings of dentinal tubules were clearly opened. But the lased surfaces of the groups over 3 W were irregular and particles were loosely attached on it. 5. With SEM examination of the lased surface of enamel groups revealed severely destructed surface at the 6 W group and melting drop materials at the 3 W group. But the lased surface of 4 W group revealed clearly ablated surface. Therefore when cutting teeth using Er:YAG laser, the lasing power which can make effective ablation rate and minimize the thermal effect could be 3W at dentin and 4W at enamel. But, further studies and additional data collection will be necessary for appropriate lasing condition of Er:YAG laser.

A Study on the Effect of UNSM Treatment on the Mechanical and Tribological Properties of STS 316L Printed by Selective Laser Melting (SLM 방식으로 출력된 STS 316L의 기계적 및 마찰·마모 특성에 미치는 UNSM처리 후 영향에 관한 연구)

  • Ro, J.S.;Sanseong, C.H.;Umarov, R.;Pyun, Y.S.;Amanov, A.
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.270-278
    • /
    • 2018
  • STS 316L prepared by additive manufacturing (AM) exhibits deterioration of mechanical properties and wear resistance due to the presence of defects such as black-of-fusion defects, internal porosity, residual stress, and anisotropy. In addition, high surface roughness (integrity) of AM products remains an issue. This study aimed to apply ultrasonic nanocrystal surface modification (UNSM) technology to STS 316L prepared by AM to increase the surface hardness, to reduce the surface roughness, and to improve the friction and wear behavior to the level achieved by bulk material manufactured using traditional processes. Herein, the as-received and polished specimens were treated by UNSM technology and their resulting properties were compared and discussed. The results showed that UNSM technology increased the surface hardness and reduced the surface roughness of the as-received and polished specimens. These results can be attributed to grain size refinement and pore elimination from the surface. Moreover, the friction of the as-received and polished specimens after UNSM technology was lower compared to those of the as-received and polished specimens, but no significant differences in wear resistance were found.

Decontamination Characteristics of 304 Stainless Steel Surfaces by a Q-switched Nd:YAG Laser at 532 nm (532 nm 파장의 큐스위치 Nd:YAG 레이저를 이용한 스테인리스 스틸 표면 제염특성)

  • Moon, Jei-Kwon;Baigalmaa, Byambatseren;Won, Hui-Jun;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.181-188
    • /
    • 2010
  • Metal surface decontamination characteristics were investigated by using a laser ablation method. A second harmonic generation of a Q-switched Nd:YAG laser with a wave length of 532 nm, a pulse energy of 150 mJ and a pulse width of 5 ns was employed to assess the decontamination performance for metal surfaces contaminated with $CsNO_3$, $Co(NH_4)_2(SO_4)_2$, $Eu_2O_3$ and $CeO_2$. The ablation behavior was investigated for the decontamination variables such as a number of laser shots, laser fluence and an irradiation angle. Their optimum values were found to be 8, 13.3 J/$cm^2$ and $30^{\circ}$, respectively. The decontamination efficiency was different depending on the kinds of the contaminated ions, due to their different melting and boiling points and was in the order: $CsNO_3>Co(NH_4)_2(SO_4)_2>Eu_2O_3>CeO_2$. We also evaluated a correlation between the metal ablation thickness and the number of laser shots for the different laser fluences.

The Weldability of $6mm^t$ Primer-coated Steel for Shipbuilding by $CO_2$ Laser( I ) - Effects of Primer Coating Condition and Gap Clearance - ($6mm^t$조선용 프라이머 코팅강판의 $CO_2$레이저 용접성( I ) - 프라이머 코팅조건과 갭 간극의 영향 -)

  • Kim Jong-Do;Park Hyun-Joon
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.76-82
    • /
    • 2005
  • Recently the application of laser welding technology has been considered to shipbuilding structure. However, when this technology is applied to primer coated steel, good quality weld beads are not easily obtained. Because the primer-coated layer caused the spatter, humping bead and porosity which are main part of the welding defect attributed to the powerful vaporizing pressure of zinc. So we performed experiment with objectives of understanding spatter and porosity formation mechanism and producing sound weld beads in 6mmt primer coated steels by a $CO_2$ CW laser. The effects of welding parameters; defocused distance, welding speed, coated thickness and coated position; were investigated in the bead shape and penetration depth on bead and lap welding. Alternative idea was suggested to suspend the welding defect by giving a reasonable gap clearance for primer coated thickness. The zinc of primer has a boiling point that is lower than melting point of steel. Zinc vapor builds up at the interface between the two sheets and this tends to deteriorate the quality of the weld by ejecting weld material from lap position or leaving porosity. Significant effects of primer coated position was lap side rather than surface. Therefore introducing a small gap clearance in the lap position, the zinc vapor could escape through it and sound weld beads can be acquired. In conclusion, formation and suspension mechanism of the welding defects was suggested by controling the factors.

Mechanism of Crack Formation in Pulse Nd:YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.86-94
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7N01 spot-welded by pulse Nd : YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed : center line crack({TEX}$C_{C}${/TEX}), diagonal crack({TEX}$C_{D}${/TEX}), and U shape crack({TEX}$C_{U}${/TEX}). Also, HAZ crack({TEX}$C_{H}${/TEX}) was observed in the HAZ region, furthermore, mixing crack({TEX}$C_{M}${/TEX}) consisting of diagonal crack and HAZ crack was observed. White film was formed at th hot crack region in the fractured surface after it was immersed to 10% NaOH water. In the case of A5083 alloy, white films in {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack region were composed of low melting phases, {TEX}$Fe_{2}SiAl_{8}${/TEX} and eutectic phases, $Mg_2$Al$_3$ and $Mg_2$Si. Such films observed $CuAl_2$, {TEX}$Mg_{32}(Al,Zn)_{3}${/TEX}, MgZn$_2$, $Al_2$CuMg and $Mg_2$Si were observed in the whitely etched films near {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Sim in the case of A7N01 alloy, respectively. The {TEX}$C_{C}${/TEX} and {TEX}$C_{D}${/TEX} cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of {TEX}$C_{M}${/TEX} crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The {TEX}$C_{U}${/TEX} crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification.

  • PDF

Mechanical Analysis of Macro-Hexagon Porous Dental Implant Using Selective Laser Melting Technique (SLM법으로 매크로 육각다공질 구조를 부여한 치과 임플란트의 역학 분석)

  • Kim, Bu-Sob;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • Purpose: In this study, FEM(Finite Element Method) and bending strength test was conducted using normal implant and porous implant for the mechanical estimation of porous dental implant made by SLM method. Methods: Mechanical characteristics of PI(porous implant) and NI(normal implant) applied distributed loads(200N, 500N) were observed through FEM analysis. And each bending strength was gotten through bending test using MTS(Mechanical Test System, Instron 8871). Results: The result of FEM analysis was observed that stress difference between upper and surface of PI was 12 times, while NI was 2 times. The result of bending test was observed that bending strength of PI was lower than NI. we made a decision about this result that cross-sectional area of NI was larger than the PI. Conclusion: The stress shielding ability of porous implant was better than normal implant through result of FEM analysis. And bending strength of porous implant was lower than NI. We think that cause of this result was difference of cross-sectional area.

Study of High Speed Steel AISI M4 Powder Deposition using Direct Energy Deposition Process (DED 기술을 이용한 고속도 공구강 M4 분말 적층에 관한 연구)

  • Lee, E.M.;Shin, G.W.;Lee, K.Y.;Yoon, H.S.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.353-358
    • /
    • 2016
  • Direct energy deposition (DED) is an additive manufacturing technique that involves the melting of metal powder with a high-powered laser beam and is used to build a variety of components. In recent year, it can be widely used in order to produce hard, wear resistant and/or corrosion resistant surface layers of metallic mechanical parts, such as dies and molds. For the purpose of the hardfacing to achieve high wear resistance and hardness, application of high speed steel (HSS) can be expected to improve the tool life. During the DED process using the high-carbon steel, however, defects (delamination or cracking) can be induced by rapid solidification of the molten powder. Thus, substrate preheating is generally adopted to reduce the deposition defect. While the substrate preheating ensures defect-free deposition, it is important to select the optimal preheating temperature since it also affects the microstructure evolution and mechanical properties. In this study, AISI M4 powder was deposited on the AISI 1045 substrate preheated at different temperatures (room temperature to $500^{\circ}C$). In addition, the micro-hardness distribution, cooling rates, and microstructures of the deposited layers were investigated in order to observe the influence of the substrate preheating on the mechanical and metallurgical properties.

Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • Ha, Yong Su;Jo, Chang Hyeon;Gang, Jeong Yun;Kim, Jong Do;Park, Hwa Sun
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)