• Title/Summary/Keyword: laser surface cladding

Search Result 37, Processing Time 0.033 seconds

Cracking Susceptibility of Laser Cladding Process with Co-Based Metal Matrix Composite Powders (레이저 클래딩 공정 조건이 코발트 합금-텅스텐 카바이드 혼합 코팅층의 균열 발생에 미치는 영향)

  • Lee, Changmin;Park, Hyungkwon;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.41-46
    • /
    • 2014
  • In this study, cracking susceptibility of laser cladding was investigated according to the processing parameters such as laser power, scan speed and feeding rate with blended powders of stellite#6 and technolase40s (WC+NiCr). The solidification microstructure of clad was composed of Co-based dendrite structures with ${\gamma}+Cr7C3$ eutectic phases at the dendritic boundaries. The crack propagation showed transgranular fracture along dendritic boundaries due to brittle chrome carbide at the eutectic phases. From results of fractography experiments, the fracture surface was typical cleavage brittle fracture in the clad and substrate. The number of clad cracks, caused by a tensile stress after the solidification, increased with increase of laser power, scan speed and feeding rate. Increase of the laser power caused large pores by facilitating WC decarburizing reaction. And the pores affected increase of crack susceptibility. High scan speed caused increment of clad cracks due to thermal stress and WC particle fractures. Also, increase of the feeding rate accompanied an amount of WC particles causing crack initiation and decarburizing reaction.

Comparison of Mechanical properties and Surface Friction of White Metals Produced by Centrifugal and Laser Cladded on SCM440 (원심주조방식과 레이저 클래딩 증착법을 통한 화이트메탈의 기계 및 마찰특성 비교)

  • Jeong, Jae-Il;Kim, Dong-Hyuk;Park, Jin-Young;Oh, Joo-Young;Choi, Si-Geun;Kim, Seock-Sam;Cho, Young Tae;Lee, Ho;Ham, Seung-Sik;Kim, Jong-Hyoung
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.84-92
    • /
    • 2018
  • Bearings are essential for reducing vibration and wear, in order to achieve high durability and increase longevity. White metal treatment of tilting pads via centrifugal casting method has the possibility of increasing durability. However, this manufacturing method has drawbacks such as long processing time, high defect rate, and harmful health effects. Laser cladding deposition technique is a powerful method that can address these issues by decreasing the processing time and providing good adhesion. In this study, we suggest optimum conditions for laser cladding deposition that can be used in industrial applications. We deposited a soft white metal layer on SCM440 that is primarily used in shafts to minimize wear of bearing pads. During the laser deposition process, we controlled factors such as laser power, powder feed rate, and laser head speed to determine the optimum conditions. In addition, we measured the hardness using micro Vickers, and performed field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and friction tests to investigate the mechanical properties and surface characteristics for different parameters. Based on the experimental results, we suggest that laser power, powder feed rate, and laser head speed of 1.3 kW, 2.5 rpm, and 10 mm/s, respectively, constitute the optimum conditions for producing white metals using laser cladding.

Pulsed laser surface modification for heat treatment and nano-texturing on biometal surface

  • Jeon, Hojeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.118.1-118.1
    • /
    • 2016
  • The laser surface modification has been reported for its functional applications for improving tribological performance, wear resistance, hardness, and corrosion property. In most of these applications, continuous wave lasers and pulsed lasers were used for surface melting, cladding, alloying. Since flexibility in processing, refinement of microstructure and controlling the surface properties, technology utilizing lasers has been used in a number of fields. Especially, femtosecond laser has great benefits compared with other lasers because its pulsed width is much shorter than characteristic time of thermal diffusion, which leads to diminish heat affected zone. Moreover, laser surface engineering has been highlighted as an effective tool for micro/nano structuring of materials in the bio application field. In this study, we applied femtosecond and nanosecond pulsed laser to treat biometals, such as Mg, Mg alloy, and NiTi alloy, by heating to improve corrosion properties and functionalize their surface controlling cell response as implantable biomedical devices.

  • PDF

High-temperature oxidation behaviors of ZrSi2 and its coating on the surface of Zircaloy-4 tube by laser 3D printing

  • Kim, Jae Joon;Kim, Hyun Gil;Ryu, Ho Jin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2054-2063
    • /
    • 2020
  • The high-temperature oxidation behavior of ZrSi2 used as a coating material for nuclear fuel cladding was investigated for developing accident-tolerant fuel cladding of light water reactors. Bulk ZrSi2 samples were prepared by spark plasma sintering. In situ X-ray diffraction was conducted in air at 900, 1000, and 1100 ℃ for 20 h. The microstructures of the samples before and after oxidation were examined by scanning electron microscopy and transmission electron microscopy. The results showed that the oxide layer of zirconium silicide exhibited a layer-by-layer structure of crystalline ZrO2 and amorphous SiO2, and the high-temperature oxidation resistance was superior to that of Zircaloy-4 owing to the SiO2 layer formed. ZrSi2 was coated on the Zircaloy-4 tube surface using laser 3D printing, and the coated tube was oxidized for 2000 s at 1200 ℃ under a vapor/argon mixture atmosphere. The outer surface of the coated tube was hardly oxidized (10-30 ㎛), while the inner surface of the uncoated tube was significantly oxidized to approximately 300 ㎛.

Hard, Wear Resistant Metal Surfaces for Industrial Applications through Laser Powder Deposition

  • Sears, James;Costello, Aaron
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.293-294
    • /
    • 2006
  • Laser Powder Deposition (LPD) is a technology capable of modifying a metallic structure by adding the appropriate material to perform a desired function. LPD offers a unique fabrication technique that allows the use of soft (tough) materials as base structures. Through LPD a hard material can be applied to the base material with little thermal input (minimal dilution and heat-affected-zone {HAZ}), thus providing the function of a heat treatment or other surface modifications. These surface modifications have been evaluated through standard wear testing (ASTM G-65), surface hardness (Rc), micro-hardness (vickers), and optical microscopy.

  • PDF

Microstructure and Mechanical Properties of Laser Welded Ni-base Superalloy (니켈기 초합금 레이저 용접부의 미세조직과 기계적 특성)

  • Choi, Chul
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.123-125
    • /
    • 2004
  • Flat specimens of polycrystal Ni-base superalloy with U-shape notch on both sides were laser cladded by injection of IN738LC powder onto surface. The quality of cladding was investigated by microstructural analysis and high temperature tension test, creep test at 950$^{\circ}C$. Effects of heat treahnent and the angle between the tension axis and the direction of weldment were also investigated.

  • PDF

Development of Innovative Light Water Reactor Nuclear Fuel Using 3D Printing Technology (3 차원 프린팅 기술을 이용한 신개념 경수로 핵연료 기술 개발에 관한 연구)

  • Kim, Hyo Chan;Kim, Hyun Gil;Yang, Yong Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.279-286
    • /
    • 2016
  • To enhance the safety of nuclear reactors after the Fukushima accident, researchers are developing various types of accident tolerant fuel (ATF) to increase the coping time and reduce the generation of hydrogen by oxidation. Coated cladding, an ATF concept, can be a promising technology in view of its commercialization. We applied 3D printing technology to the fabrication of coated cladding as well as of coated pellets. Direct metal tooling (DMT) in 3D printing technologies can create a coated layer on the tubular cladding surface, which maintains stability during corrosion, creep, and wear in the reactor. A 3D laser coating apparatus was built, and parameter studies were carried out. To coat pellets with erbium using this apparatus, we undertook preliminary experiments involving metal pellets. The adhesion test showed that the coated layer can be maintained at near fracture strength.

Comparison of clad layer characteristics with overlapping criterion in multi pass laser cladding (멀티패스 레이저 클래딩에 있어서 중첩률의 기준에 따른 클래드 층의 특성 비교)

  • Kim, Jong-Do;Lee, Eun-Jin;Whang, Jun-Gu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.768-773
    • /
    • 2016
  • Engine valve seat and face, which are the important factors affecting engine performance, are required to have wear, heat and corrosion resistance. In order to produce surface layer with these characteristics, PTA(plasma transferred arc) surfacing procedure is generally employed, but problems, such as large HAZ and high dilution etc., frequently occurr. Laser cladding, which overcomes the drawbacks of conventional technologies, can be employed to create a superior clad layer with low dilution, small heat affected zone, and minimal distortion. However, in case cladding is to be applied to a large area, it is necessary to overlap 1 pass clad layer because of limited clad layer width. Two criteria for the overlapping ratio-beam size and clad layer width-have been considered thus far. Upon inspection of multi pass clads, produced by different overlapping criteria, it was observed that the greater the increase in overlapping ratio, the greater was the decrease in clad layer width and increase in clad layer height regardless of the criterion used. However, a multi pass clad overlapped by the beam size criterion demonstrated a higher hardness value than a clad overlapped by the clad layer width owing to decreasing dilution of the substrate. In conclusion, the beam size was defined as the criterion for the overlapping, because the clad layer width increased or decreased depending upon process parameters.

Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

  • Jung, Yang-Il;Park, Dong-Jun;Park, Jung-Hwan;Kim, Hyun-Gil;Yang, Jae-Ho;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.218-222
    • /
    • 2018
  • An oxide-dispersion-strengthened (ODS) layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide ($Y_2O_3$)-coated Zircaloy-4 tube to induce the penetration of $Y_2O_3$ particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at $380^{\circ}C$, and from 385 to 470 MPa at $500^{\circ}C$. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to $830^{\circ}C$ at a heating rate of $5^{\circ}C/s$ and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties.

Development of Cr cold spray-coated fuel cladding with enhanced accident tolerance

  • Sevecek, Martin;Gurgen, Anil;Seshadri, Arunkumar;Che, Yifeng;Wagih, Malik;Phillips, Bren;Champagne, Victor;Shirvan, Koroush
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.229-236
    • /
    • 2018
  • Accident-tolerant fuels (ATFs) are currently of high interest to researchers in the nuclear industry and in governmental and international organizations. One widely studied accident-tolerant fuel concept is multilayer cladding (also known as coated cladding). This concept is based on a traditional Zr-based alloy (Zircaloy-4, M5, E110, ZIRLO etc.) serving as a substrate. Different protective materials are applied to the substrate surface by various techniques, thus enhancing the accident tolerance of the fuel. This study focuses on the results of testing of Zircaloy-4 coated with pure chromium metal using the cold spray (CS) technique. In comparison with other deposition methods, e.g., Physical vapor deposition (PVD), laser coating, or Chemical vapor deposition techniques (CVD), the CS technique is more cost efficient due to lower energy consumption and high deposition rates, making it more suitable for industry-scale production. The Cr-coated samples were tested at different conditions ($500^{\circ}C$ steam, $1200^{\circ}C$ steam, and Pressurized water reactor (PWR) pressurization test) and were precharacterized and postcharacterized by various techniques, such as scanning electron microscopy, Energy-dispersive X-ray spectroscopy (EDX), or nanoindentation; results are discussed. Results of the steady-state fuel performance simulations using the Bison code predicted the concept's feasibility. It is concluded that CS Cr coating has high potential benefits but requires further optimization and out-of-pile and in-pile testing.