• Title/Summary/Keyword: laser micro-drilling

Search Result 33, Processing Time 0.021 seconds

The Experimental Study in the Micro Drilling of Excimer Laser on Pyrex Glass (엑시머 레이저를 이용한 파이렉스 유리의 미세 구멍 가공)

  • Lee, Chul-Jae;Kim, Ha-Na;Jeong, Yun-Sang;Jun, Chan-Bong;Park, Young-Chul;Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.99-103
    • /
    • 2012
  • Presently, A glass is widely used in telecommunication system, optoelectronic devices and micro electro mechanical systems. Micro drilling of glass using the laser can save processing cost and improve the accuracy. This paper experiments micro drilling using KrF excimer laser on the pyrex glass of $500{\mu}m$ thickness. We have experiment to find out optimum laser machining conditions of micro drilling of glass and ablation depth and influence by processing parameter suc'h pulse repetition rate, energy density and number of pulses. Pulse repetition rate don't influence ablation depth at the micro drilling of pyrex glass. Energy density influence micro drilling of parallelism and maximum thickness that can be drilled. Ablation depth is most influenced by number of pulses.

A study on burr generation of laser micro-hole drilling for copper foil (Copper 박막의 레이저 미세홀 가공이 버 생성에 관한 연구)

  • Oh J.Y.;Shin B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.873-877
    • /
    • 2005
  • The burr of micro drilling and micro cutting on thin metal film is a major obstacle to mass production for micro PCB boards in micro technologies of personal computing and telecom explosion. As the burr affects on the assembling process, it is necessary to study continuously on control or elimination of the burr. In order to get higher valued products, it is also needed to competitive techniques with the high resolution. In this paper, we studied experimentally the burr generation that when it is processed on the copper foil by laser in micro-hole machining. Unlike mechanical machining the burr produced on substrate is a resultants of melt and re-solidification of a melten metal which was heated and treated by laser. And higher laser energy increases the size of burr. Therefor in micro-drilling with laser, it is difficult to reduce the effects of burr for very thin metal sheets. We investigated the stale of the burr and analyzed the laser ablation Cu micro machining with respect to laser intensity and processing time.

  • PDF

Ultrafast Laser Micro-machining Technology (극초단 펄스 레이저 응용 미세가공기술)

  • Lee, Jae-Hoon;Sohn, Hyon-Kee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.7-12
    • /
    • 2010
  • Due to the extremely short interaction time (< $10\times10^{-12}$sec) between laser pulse and material, which enables the minimization of heat affection, ultrafast laser micro-machining has rapidly widened its applications. In this paper, the characteristics of ultrafast laser micro-machining have been reviewed and experimentally demonstrated in laser drilling of silicon wafer and in laser cutting of rigid PCB.

Laser micro-drilling of CNT reinforced polymer nanocomposite: A parametric study using RSM and APSO

  • Lipsamayee Mishra;Trupti Ranjan Mahapatra;Debadutta Mishra;Akshaya Kumar Rout
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • The present experimental investigation focuses on finding optimal parametric data-set of laser micro-drilling operation with minimum taper and Heat-affected zone during laser micro-drilling of Carbon Nanotube/Epoxy-based composite materials. Experiments have been conducted as per Box-Behnken design (BBD) techniques considering cutting speed, lamp current, pulse frequency and air pressure as input process parameters. Then, the relationship between control parameters and output responses is developed using second-order nonlinear regression models. The analysis of variance test has also been performed to check the adequacy of the developed mathematical model. Using the Response Surface Methodology (RSM) and an Accelerated particle swarm optimization (APSO) technique, optimum process parameters are evaluated and compared. Moreover, confirmation tests are conducted with the optimal parameter settings obtained from RSM and APSO and improvement in performance parameter is noticed in each case. The optimal process parameter setting obtained from predictive RSM based APSO techniques are speed=150 (m/s), current=22 (amp), pulse frequency (3 kHz), Air pressure (1 kg/cm2) for Taper and speed=150 (m/s), current=22 (amp), pulse frequency (3 kHz), air pressure (3 kg/cm2) for HAZ. From the confirmatory experimental result, it is observed that the APSO metaheuristic algorithm performs efficiently for optimizing the responses during laser micro-drilling process of nanocomposites both in individual and multi-objective optimization.

Experimental study on micro-hole drilling with high aspect ratio using picosecond laser (피코초 레이저를 이용한 고세장비 미세 홀가공의 실험적 연구)

  • Oh, Bukuk;Kim, Jongki;Kim, Dooyoung;Lee, Seungkey;Jeong, Soohoa;Hong, Michael
    • Laser Solutions
    • /
    • v.18 no.2
    • /
    • pp.11-13
    • /
    • 2015
  • Pressure-drop in a micro-channel is critical when a hole diameter is less then 100um with the high aspect ratio, more than 40. To minimize these pressure loss for micro-channel applications is important and there would be the best hole diameter, taper angle, and their combinations. In this work, the parametric study for laser drilling of anodized material is conducted to obtain the micro-channel hole with high aspect ratio.

Micro Machining of Aluminium using Pulsed Laser Beam (레이저빔을 이용한 알루미늄의 미세가공)

  • Shin, Hong Shik
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.41-45
    • /
    • 2014
  • Micro fabrication technologies of aluminium have been required to satisfy many demands in technology fields. Pulsed laser beam machining can be an alternative method to accomplish the micro machining of aluminium. Pulsed laser beam can be applied to micro machining such as micro drilling and milling. Using pulsed laser beam, the machining characteristics of aluminium in micro drilling and milling were investigated according to average power, repetition rate, moving speed of spot. The laser beam machining with the optimal conditions can achieve precise micro figures. As a result, micro pattern, text and structures on aluminium surface was successfully fabricated by pulsed laser beam machining.

Laser Drilling System for Fabrication of Micro via Hole of PCB (인쇄회로기판의 미세 신호 연결 홀 형성을 위한 레이저 드릴링 시스템)

  • Cho, Kwang-Woo;Park, Hong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.14-22
    • /
    • 2010
  • The most costly and time-consuming process in the fabrication of today's multi-layer circuit board is drilling interconnection holes between adjacent layers and via holes within a layer. Decreasing size of via holes being demanded and growing number of via holes per panel increase drilling costs. Component density and electronic functionality of today's multi-layer circuit boards can be improved with the introduction of cost-effective, variable depth laser drilled blind micro via holes, and interconnection holes. Laser technology is being quickly adopted into the circuit board industry but can be accelerated with the introduction of a true production laser drilling system. In order to get optimized condition for drilling to FPCB (Flexible Printed Circuit Board), we use various drill pattern as drill step. For productivity, we investigate drill path optimization method. And for the precise drilling the thermal drift of scanner and temperature change of scan system are tested.

Blind Via Hole Drilling Using DPSS UV laser (DPSS UV 레이저를 이용한 블라인드 비아 홀 가공)

  • 김재구;장원석;신보성;장정원;황경현
    • Laser Solutions
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • Micromachining using the DPSS 3rd Harmonic Laser (355nm) has outstanding advantages as a UV source in comparison with Excimer lasers in various aspects such as maintenance cost, maskless machining, high repetition rate and so on. It also has the greater absorptivity of many materials in contrast to other IR sources. In this paper, the process for micro-drilling of blind hole in Cu/PI/Cu substrate with the DPSS UV laser and the scanning device is investigated by the experimental methods. It is known that there is a large gap between the ablation threshold of copper and that of PI. We use the Archimedes spiral path for the blind hole with different energy densities to ablate the different material. Finally, the blind via hole of diameter 100$\mu\textrm{m}$ and 50$\mu\textrm{m}$ was drilled.

  • PDF

Rapid Manufacturing of Laser Micro-Patterning Using Fixed Masks (고정 마스크에 의한 레이저 미세패터닝 쾌속 제작)

  • Shin, B.S.;Oh, J.Y.
    • Laser Solutions
    • /
    • v.9 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • The technologies of laser micromachining are changed toward more complex-micropatterning, from the micro circle-shaped hole drilling to the micro arbitrary-shaped hole drilling. In this paper, the fundamental experiments by using DPSS 3rd harmonic $Nd:YVO_4\;laser({\lambda}=355nm)$ were carried out in order to obtain the feasibility of flexible micropatterning by various fixed masks. Fixed masks and Galvano scanners were investigatde to make micro patterns. from these experimental results, micropatterns on PEN film were rapidly manufactured in large area.

  • PDF