• Title/Summary/Keyword: laser metrology

Search Result 90, Processing Time 0.022 seconds

Fabrication of a Single Molecule Detection System and Its Application: Connection between Ensemble and Single Molecule Measurements

  • Park, Mira;Lee, Heung Soon;Kim, DongHo;Song, Nam Woong
    • Journal of Photoscience
    • /
    • v.11 no.32
    • /
    • pp.47-53
    • /
    • 2004
  • A laser scanning fluorescence microscope system has been fabricated for single molecule detection (SMD). Problems associated with the system set-up have been discussed along with proper suggestions. Based on the SMD results obtained by using the apparatus, a statistical method has been suggested to determine the minimum number of required molecules to form a group of uniform average in a selected error range.

  • PDF

Ultrafast Femtosecond Lasers: Fundamentals and Applications (펨토초 레이저의 원리 및 응용)

  • Kim, Young-Jin;Kim, Yun-Seok;Kim, Seung-Man;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.7-16
    • /
    • 2010
  • Physical fundamentals of ultrashort femtosecond lasers are addressed along with emerging applications for precision manufacturing and metrology. Femtosecond lasers emit short pulses whose temporal width is in the range of less than a picosecond to a few femtoseconds, thereby enabling extremely high peak-power machining with less thermal damages. Besides, the broad spectral bandwidth of femtosecond lasers constructed in the form of frequency comb permits absolute distance measurements leading to ultraprecision positioning control and dimensional metrology.

Frequency Stabilization of Femtosecond Lasers for Dimensional Metrology (거리 및 형상 측정을 위한 펨토초 레이저의 주파수 안정화)

  • Kim Young-Jin;Jin Jong-Han;Kim Seung-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.188-191
    • /
    • 2005
  • A common feature in various methods of optical interferometry for absolute distance measurements is the use of multiple monochromatic light components either in sequence or in parallel at the same time. Two or multiple wavelength synthesis has been studied though its performance is vulnerable to the frequency instability of the light source. Recently continuous frequency modulation is considered a promising method with availability of wide band tunable diode lasers, which also have frequency instability errors. We can lock frequencies of these third-party light sources to the modes of the femtosecond laser which is stabilized to the precision of the standard radio frequency. To this end, we have stabilized all the modes of the femtosecond laser to the atomic frequency standard by using powerful tools of frequency-domain laser stabilization.

  • PDF

Active cancellation of phase noise induced by an optical fiber for delivery of optical frequency standard (광섬유를 통한 광 주파수 전송에서 광 위상 잡음의 능동 제거)

  • Lee, Won-Kyu;Kim, Jae-Wan;Ryu, Han-Young;Kim, Eok-Bong
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.44-49
    • /
    • 2007
  • We have transferred a narrow-linewidth $1.5{\mu}m$ laser beam through a 525 m fiber network with excellent transfer stability. The fiber-induced optical phase noise during the fiber transmission is cancelled by configuring a noise-canceling servo. The transfer instability was $2{\times}10^{-17}$ at 1 s of averaging time. We quantitatively analyzed the transferred optical frequency in the frequency domain and in the time domain.

Optical Technology of Mechanical Industries in the 21st Century (21세기 기계산업의 변화 - 광기술의 발전 동향)

  • Joo, Ki-Nam
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.1
    • /
    • pp.53-61
    • /
    • 2017
  • In this review paper, the trend for optical technology is described as the development of mechanical industries in the $21^{st}$ century. Optical technology has been essential in various industries such as mechanical, electronic industries as the convergence technology. Based on the roadmap of optical science and technology, 12 working groups are categorized as the technical point of view and most of them are closely related to mechanical industries. Especially, solid-state lighting, optical metrology and industrial laser processing are important technologies in precision engineering and manufacturing. This paper introduces these optical technologies and their technological issues to look into the development trends and expectation.

Mechanical Design for an Optical-telescope Assembly of a Satellite-laser-ranging System

  • Do-Won Kim;Sang-Yeong Park;Hyug-Gyo Rhee;Pilseong Kang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.419-427
    • /
    • 2023
  • The structural design of an optical-telescope assembly (OTA) for satellite laser ranging (SLR) is conducted in two steps. First, the results of a parametric study of the major design variables (e.g. dimension and shape) of the OTA part are explained, and the detailed structural design of the OTA is derived, considering the design requirements. Among the structural-shape concepts of various OTAs, the Serrurier truss concept is selected in this study, and the collimation of the telescope according to the design variables is extensively discussed. After generating finite-element models for different structural shapes, self-gravity analyses are performed. To minimize the deflection and tilt of the mirror and frame for the OTA under the limited design requirements, a parametric study is conducted according to design variables such as the shapes of the upper and lower struts and the spider vane. The structural features found in the parametric study are described. Finally, the OTA structure is designed in detail to maintain the optical alignment by balancing the gravity deflections of the upper and lower trusses using the optimal combination of the parameters. Additionally, thermal analysis of the optical telescope design is evaluated.

Infrared Multiphoton Dissociation of $CHCl_2F$: Reaction Mechanisms and Product Ratio Dependence on Pressure and Laser Pulse Energy

  • Song, Nam-Woong;Lee, Won-Chul;Kim, Hyong-Ha
    • Journal of Photoscience
    • /
    • v.12 no.2
    • /
    • pp.101-107
    • /
    • 2005
  • Infrared multiphoton dissociation of $CHCl_2F$ was studied using $CO_2$ laser excitation. Three products, $C_2Cl_2F_2$, $C_2ClF_3$, and $C_2HClF_2$, were identified by the analysis of the gas mixture from the photoreaction of $CHCl_2F$. The dependence of the reaction probability on added Ar gas pressure and excitation laser pulse energy was investigated. At low pressure (< 10 torr), the reaction probability increased as Ar pressure increased due to the rotational hole-filling effect, while it diminished with the increase of Ar pressure at high pressure (> > 20 torr) due to the collisional deactivation. The ratio of two products $(C_2ClF_3/C_2Cl_2F_2)$ decreased at low pressure (< 10 torr) and increased at high pressure (> 20 torr) with the increase of Ar pressure. The log-log plot of the reaction probability vs. laser pulse energy (${\\phi}$) was found to have a linear relationship, and its slope decreased as the added Ar pressure was increased. The reaction mechanisms for product formation have been suggested and validated by experimental evidences and considering the energetics. Fluorine-chlorine exchange reaction in the intermediate complex has been suggested to explain the formation of $C_2ClF_3$.

  • PDF