• Title/Summary/Keyword: laser measurement

Search Result 2,033, Processing Time 0.039 seconds

Semi Variance Measurement on Tunnel using 3D Laser Scanning (3차원 레이저 측량기를 이용한 터널 변위 관측)

  • Lee, Jae-One;Kim, Yong-Suk;Song, Youn-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.10 no.1
    • /
    • pp.27-35
    • /
    • 2007
  • There are many risks in constructing tunnel-structure. To prevent these risks from occurring and secure safety, the precise and rapid survey of inside displacement of the tunnel is required. But nowadays the measurement of the crown settlement, convergency, and surface settlement depends on general kinds of method which use total station or level. In the way to provide data about maintaining structure according to recent improvement and progress of measuring technology, 3D laser scanning is used. It solves the problem of reliability in measuring displacement of existing structure, provides material that enables to estimate shape change of structure visually, and makes it possible to deliberate speedy countermeasure. By this three dimensioning it is possible to make efficient use of structure maintenance and field measurement.

  • PDF

Dynamic Quasi-Elastic Light Scattering Measurement of Biological Tissue

  • Youn, Jong-In;Lim, Do-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.169-173
    • /
    • 2007
  • During laser irradiation, mechanically deformed cartilage undergoes a temperature dependent phase transformation resulting in accelerated stress relaxation. Clinically, laser-assisted cartilage reshaping may be used to recreate the underlying cartilaginous framework in structures such as ear, larynx, trachea, and nose. Therefore, research and identification of the biophysical transformations in cartilage accompanying laser heating are valuable to identify critical laser dosimetry and phase transformation of cartilage for many clinical applications. quasi-elastic light scattering was investigated using Ho : YAG laser $(\lambda=2.12{\mu}m\;;\;t_p\sim450{\mu}s)$ and Nd:YAG Laser $(\lambda=1.32{\mu}m\;;\;t_p\sim700{\mu}s)$ for heating sources and He : Ne $(\lambda=632.8nm)$ laser, high-power diode pumped laser $(\lambda=532nm)$, and Ti : $Al_2O_3$ femtosecond laser $(\lambda=850nm)$ for light scattering sources. A spectrometer and infrared radiometric sensor were used to monitor the backscattered light spectrum and transient temperature changes from cartilage following laser irradiation. Analysis of the optical, thermal, and quasi-elastic light scattering properties may indicate internal dynamics of proteoglycan movement within the cartilage framework during laser irradiation.

Development of Catenary Stagger and Height Measurement System using Laser (레이저를 이용한 전차선 편위 및 높이 측정 시스템 개발)

  • Song, Sung-Gun;Lee, Teak-Hee;Song, Jae-Yeol;Park, Seong-Mo
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.569-574
    • /
    • 2008
  • Catenary and Pantograph are used to transmit electrical energy to electric railways. Catenary (Overhead Contact Lines) should be installed precisely and managed for stable train operations. But external factors such as weather, temperature, etc., or aging affect catenary geometry. Changed catenary stagger and height cause high voltage spark or instant electric contact loss. Big spark derived from contact loss can damage the pantograph carbon strip and overhead contact lines that might interrupt the train operations. Therefore, to prevent a big scale spark or electric contact loss, catenary maintenance are required catenary geometry measurement systems with catenary maintenance capability. In this paper, we describe the development of catenary height and stagger measurement system. The catenary height and stagger measurement system uses Acuity company's AR4000 Laser Range Finder for distance measurement and AccuRange Line Scanner for degree measurement. This system detects suspicious overhead line sections with excessive stagger and height stagger variance.

Adaptive Error Compensation of Heterodyne Laser Interferometer using DFNN (DFNN을 이용한 헤테로다인 레이저 간섭계의 적응형 오차 보정)

  • Heo, Gun-Haeng;Lee, Woo-Ram;You, Kwan-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1042-1047
    • /
    • 2008
  • As an ultra-precision measurement system the heterodyne laser interferometer plays an important role in semiconductor industry. However the errors of environment and nonlinearity which are caused by air refraction and frequency-mixing separately reduce the accuracy of displacement measurement. In this paper we propose a DFNN(data fusion and neural network) method for error compensation. As a hybrid method of data fusion and neural network, DFNN method reduces the environmental and nonlinear error simultaneously. The effectiveness of the proposed error compensation method is proved through experimental results.

The Parameter Identification for Localization Scheme of the Optics-Based Micro Sensor Node (광신호 기반의 마이크로 센서 노드 위치 인식 시스템을 위한 파라미터 식별)

  • Jeon, Ji-Hun;Lee, Min-Su;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • In this paper, the parameter identification for localization scheme for the optics-based micro sensor node is conducted. We analyzed short measurement range problem which can be occurred in optical based micro sensor node localization method using a time of flight. And we set up the theory for distance and maximum reflected laser power to overcome the problem by identifying hardware parameters like laser power, effective area of MEMS CCR, sensitivity of photodetector, and so on. Experimental results of measurement of maximum reflected laser power were compared with results of the theory. By using the theory, we can identify hardware parameters of localization scheme to measure particular position of the optics-based micro sensor node.

Real-Time Estimation and Compensation of the Laser Interferometer in Nano-Scale

  • Lee, Yong-Woo;Choi, Hyun-Seok;Park, Tong-Jin;Han, Chang-Soo;Choi, Tae-Hoon;Lee, Nak-Kyu;Lee, Hyoung-Wook;Na, Kyung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1225-1230
    • /
    • 2003
  • In this study, Real-time estimation and compensation procedure are developed for the laser interferometer. This system is designed with homodyne quadrature-phase detection method using the Laser interferometer. The errors in this system are due to noise, disturbance and undefined model dynamics. DSP(Digital Signal Processor) is applied for real time compensation of these errors. This estimator and compensation is verified with measurement test.

  • PDF

Error correction in laser scanner 3D measurement (레이저 스캐너 3차원 계측에 있어서의 오차 보정)

  • 김응규
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.94-101
    • /
    • 1996
  • When objects are scanned spatially by a laser-beam and mechanical mirror scanners, spatial information can be obtained, and then it is improtant to accurately obtain the parameters relating the light source and camera positions, etc.. In this paper, a calibration technique is presented for correction of measuremtn errors in a three-dimensional laser scanner system with two galvanometers. First, a model of the systematic errors is developed based on the geometry of the scanning system. Calibration parameter values are then iteratively adjusted with coarse-fine search in order to minimize errors (evaluation function) between measured and computed distances. It is shown that this correction method results in measurement precision suitable for practical use.

  • PDF