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1. INTRODUCTION 
 

In these days, many researchers have investigated on the 
high precision displacement measuring system in 
nanometrology. The laser interferometry is the technique most 
frequently used for high precision displacement measurement. 
The laser interferometer provides the resolution much smaller 
than sub-nanometer, its accuracy is limited by the nonlinearity 
[1]. The scale division nonlinearity is mainly attributable to 
the electronic evaluation of two signals for which the assumed 
90° phase shift is not maintained [2-4]. Measurement errors in 
the laser interferometer are due to a polarization mixing, a 
laser power drift, and a laser beam alignment, an imperfection 
of the electronic circuit and error motion of the stage. These 
errors cause the Lissajous trajectory of two phases quadrature 
signals to be distorted from the ideal circle [2,3].  

Heydemann proposed a technique of least-square fitting of 
experimental data in order to assess and correct for these 
errors [2]. Frantisek [5] and Chien-ming [6] proposed a 
technique of elliptical fitting by a least-squares method to 
correct the nonlinearities resulting from many factors. A 
similar approach was reported in phase-shifting interferometry 
to improve the phase measuring accuracy [7,8]. However, 
these error compensations are very time-consuming procedure, 
so this method difficult to be used for the real-time 
measurement [1]. 

Wansong and Xianyu report the real-time calibration 
method in phase shift interferometer. It is based on the 
FFT(Fast Fourier Transform) and adaptive filter [9].  

In this paper, a homodyne interferometer with quadrature 
fringe detection was constructed for displacement 
measurement. We try to minimize errors of miss-aligned 
optical parts in this optical system. The kalman filter and the 
digital signal processing are applied for compensation of 
phase shift error and real-time measurement in this study. The 
measurement errors are minimized using the Kalman filter and 
the real-time signal processing. 

 
2. PRINCIPLE OF DISPLACEMENT 

MEASUREMENT INTERFEROMETER 
 

A single-frequency polarizing interferometer with 
phase-quadrature detection method is shown in Fig. 1. Two 
partially linear polarized beams with the same frequency are 
split by a beamsplitter(BS) upon which 45° linearly polarized 
radiation impinges. A retardation plate is placed before the  

fixed mirror in order to obtain circularly polarized radiation.  
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Fig. 1 Configuration of the one-frequency interferometer 

 
The combined radiation, including linear and circular 

radiations, impinges upon a polarizing beamsplitter(PBS) and 
then produces two orthogonal and linear radiations with phase 
difference of 2π  between them. 

The electric fields of radiation both of the moving mirror 
arm(El) and of the fixed arm(Er) can be expressed in complex 
notation: 

( )[ ]
ll rktiBE φω +⋅+= exp                       (1) 

( )[ ]
rr rktiAE φω +⋅+= exp                       (2) 

Here 
lφ  and 

rφ  are initial constant phases for each 

electric field. Because vectors k  and r  are in coincident 
directions both for the El  and for the 

rE  electric field, the 

magnitudes of the two electric fields can be written as 
( )[ ]

ll kLtiBE φω ++= 12exp                  (3) 

( )[ ]
rr kLtiAE φω ++= 22exp                    (4) 

After passing through a polarizing beamsplitter, the 
combined beam, 

rl EE + , splits into two components, the x  

component denoted by 
xE  and the y  component denoted 

by 
y

E , with the following relations: 
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Here 
lrx φφ =  and 22 πφπφφ +=+=

lrxry
. 

The wave intensity being received by the photo-detector is 
proportional to the square of the electric field, so that the 
output signal, 

xI , of detector 1 is 
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and the signal of detector 2 is 
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By varying the optical path length 
21 LL −  (that is, by 

moving the measuring arm), both the output of detector 1 and 
that of detector 2 appear as sinusoidal signals with a phase 
difference of 2π  between them. An ellipse of the rotating 
vector with centre at h  of the horizontal axis and k  of the 
vertical axis and radius a  and b  can be obtained when we 
feed the phase quadrature signals 

xI  and 
y

I . 

Here xxyyxx
BAaBAkBAh 2,, 2222 =+=+=  and 

yy
BAb 2= . 

Assume that 
yx

EE =  and that the gains of receivers 1 and 

2 are equal, then the output figure must be a circle with kh =  
and ba = . Because one revolution of the rotating vector (a 
phase change of π2 ) is equivalent to a change in optical path 
length of 2λ , the measurement of optical path length is now 

performed in terms of measuring the phases of the rotating 

vector. If one can resolve the phases to within �1.0 , then 
length differences less than nm1.0  can be obtained [1]. 

In practice, the electric states after the polarizing 
beamsplitter are subject to cross talk with each other due to 
imperfections in the polarizing beamsplitter and other reasons. 
In the case with cross talk 

( )[ ]
( )[ ]

ly

lxlylxlx

kLtipB

kLtiBpEEE

φω
φω

+++
++=+=

1

1

'

2exp

2exp
         (9) 

( )[ ]
( )[ ]

ryy

rxxryrxrx

kLtipA

kLtiApEEE

φω
φω

+++
++=+=

2

2

'

2exp

2exp
       (10) 

( )[ ]
( )[ ]

lx

lylxlyly

kLtipB

kLtiBpEEE

φω
φω

+++
++=+=

1

1

'

2exp

2exp
        (11) 

( )[ ]
( )[ ]

rxx

ryyrxryry

kLtipA

kLtiApEEE

φω
φω

+++
++=+=

2

2

'

2exp

2exp
       (12) 

Here p  stands for the cross talk ratio. Letting 
yy

pB=β , 

yy
pA=α , 

xx pB=β and 
xx pA=α  represent the 

coefficients of the cross talk term, then the two x  and y  
component radiations with polarizing cross talk are as follows: 
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The output signals of detectors 1 and 2 with the cross talk 
term are denoted by '

x
I  and '

y
I  : 
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Letting 
2222'

yxyx
ABh αβ +++=                        (17) 

2222'

xyxy
ABk αβ +++=                        (18) 

)(2 21 LLk −=φ                              (19) 

and with a  and b  as defined before, Eq. (15) and Eq. (16) 
can be re-written in the simpler forms 

φβαφ sin2cos''

yyx
ahI ++∝                   (20) 

φβαφ cos2cos''

xxy
bkI ++∝                  (21) 

Eq. (20) and Eq. (21) are similar to Eq.  (7) and Eq. (8) but 
with an extra distortion term in each equation. These equations 
form another elliptical rotating vector with a new centre at 'h  

and 'k , the same radius a  with an extra modulated term 
φβα sin2

yy
and the same radius b  with an extra modulated 

term φβα cos2 xx
 [1]. 
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Fig. 2 phase diagram explaining the nonlinear phase error of a 
one-frequency interferometer 
 
 

These two ellipses are illustrated in Fig. 2. For simplicity, h', 
k' and βx are as following; hh =' , ααα ===

yx
kk ,'  and 

βββ ==
yx

. 

In the Fig. 2, The large full ellipse with radius a and b 
represents, in the absence of cross talk, the ideal measurement 
signal which rotates about the origin with )(tφ  as the 
difference in optical path changes. 

The nonlinearity of a one-frequency interferometer can be 
obtained by comparing Eq. (7) and Eq. (8) to Eq. (20) and Eq. 
(21). Fig. 2 provides a clear basis for determining the 
nonlinearity. The large solid ellipse with radius a  and b  
describes, in the absence of cross talk, the ideal measurement 
signal which rotates about the origin with )(tφ  as the 
difference in optical path changes; the small full circles of 
radius αβ2  describe the distortion which is caused by 
polarization cross talk; and the broken ellipse describes the 
real measurement signal in the presence of cross talk. To 
account for the center shift effect caused by 'h  and 'k , Fig. 
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2 tells us that the nonlinearity is an asymmetrical, 
second-order phase error of two cycles per fringe. If the center 
shift by 'h  and 'k  is omitted; that is, we let hh ='  and 

kk =' . As shown in Fig. 2, the maximum phase leadings are 
at 0=φ  and at πφ = , with the same magnitude as 
following; 
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The maximum phase laggings occur at 2πφ = and 

23πφ =  with the same magnitude 
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At 45,43,4 πππφ =  and 47π , there are no phase 

errors. 
Then,  

φ
π
λ ∆⋅=∆

4
L                                  (24) 

Where 
21 LLL −=∆ , φ∆  is phase difference with fixed 

arm and moving arm. 
 
 

3. DESIGN OF THE ESTIMATOR AND 
COMPENSATOR IN REAL-TIME 

 

3.1 Estimator : Model-based Kalman filter 
Consider a nonlinear system: 
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f is the dynamics of the state vector x(t). Since f is used to 
estimate the state of the system, it is referred to as the 
predictor. h is the model of measurements z. It is used to 
correct the prediction and referred to as the corrector. w and u 
are the zero-mean Gaussian white system and measurement 
noise. The Extended Kalman filter calculates the best 
estimation of the state x̂  and its covariance P: 
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with the local linearizations
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The application is to integrate the dynamic model into f. This 
implementation is shown in Fig. 3. If the model depends on 
additional control parameters, these parameters are also 
entered in the predictor. 
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Fig. 3 Real-time Extended Kalman filter block diagram 
 Dynamic model is used to calculate the prediction of the next 

state +x~ . The measurements z(x) are used to correct this 

prediction. 
It reduces the average least-square error between the real 

state x and the estimated state x̂ . If the dynamic model 
differs from the real dynamics, this is no longer true. If 'f  
represents the deviation of the model from the real dynamics 
eq. (26) now reads as follows:  
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 'x̂ and P in eq. (27) includes additional terms which have 
been underlined. These terms are perturbations of the real 
filter dynamics. Obviously, there is no compensation 
mechanism which is able to reduce this perturbation. 
 
3.2 Compensator in real-time 
In order to stabilize the Kalman filter, the perturbations in 
equation (27) have to be compensated. This is done by 
introducing another Kalman filter which estimates the errors 
of the state filter. The complete design is shown in Fig. 4. . 
The state filter is boxed. The measurements z are split between 
these two filters into 

1z  and 
2z  to avoid statistically 

dependent measurements. 
2z is used to measure the difference 

of the estimate 'x̂  and the real state. 
This difference corrects the prediction of the error xδ . The 

whole process can be described by: 
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The filter equations for this second filter are: 
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  This filter is able to correct the effect of the perturbations in 
eq. (27) since measurements of xδ  include these effects. In 
case of a mismodeled system, the dynamics of the mismodeled 
error estimation reads as follows: 
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Eq. (30) also contains perturbations but, in this case, they can 
be easily handled since δQ  is a measure of the quality of the 

error model. By increasing the weight of the measurements, 
one can reduce the influence of the perturbation.  
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Fig. 4 Stabilized model-based Kalman filter 

In the Fig. 4, This filter consists of two Kalman filters: The  
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boxed filter(A) estimates the state. It corresponds to the 
standard application of an Extended Kalman filter (Fig. 3) The 
second filter estimates the error of the boxed filter(A). The 
available measurements are split between these two filters to 
guarantee statistically independent measurements. 
  The dynamics of the standard Kalman filter is a rotated 
ellipse with an amplitude of about 1.5. The filter performance 
is less accurate than the unfiltered sensor information, which 
clusters around the green ellipse. The reason for this 
misbehavior is the fact that the corrector weights the predicted 
state against the measured state, but both lie on different 
ellipses. Since the period of both signals also differs, the result 
is not necessarily a ellipse between these two ellipses. The 
filtered values still cluster around the real ellipse, there is no 
obvious deviation. 
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4. EXPERIMENT CONFIGURATION AND 
MEASUREMENT METHOD 

 
This chapter described the configuration and measurement 

method of ultra-high precision measurement system. 
 

4.1 Experiment configuration 
 

The experimental set-up is shown in Fig.6-7. As a beam 
source, a vertical polarized He–Ne laser at the wavelength 
0.6329µm is used. In the path of the laser beam, a half-wave 
plate first rotates the polarization from vertical to about 45°, 
so that the polarizing beam splitter that follows can split the 
beam into two nearly equal components, one directed to the 
reference mirror and the other to the object mirror, which is 
fixed on a flexure micro-stage being actuated by a PZT. Both 
beams from two mirrors travel back and are interfered at the 
polarizing beam-splitter. The non-polarizing beam splitter 
divides the beam into two nearly equal components. One of 
these components is sent directly to a polarizing beam splitter, 
which produces a pair of interference patterns in phase 
opposition. The other component is made to pass through a 
quarter-wave plate at 45°, so that an extra 4/λ  delay is 
added to the optical path difference. The final polarizing beam 
splitter then produces a pair of patterns in phase opposition, 
but with 2/π  phase lag with respect to the previous ones. 
Overall, four quadrature signals are available at the 
photo-detectors. The interference signals detected by four 
photo-detectors have the phases of 0°, 90°, 180° and 270°, 
respectively. 

Two signals yx II +  with a phase difference of 90° are 

obtained by subtracting the signal with phase of 180° from the 
signal of 0° and the signal with phase 270° from the signal of 
90°. 

 

4
λ

2
λ

25 mµ

 
 

Fig. 6 Schematic diagram of experiment 
 
 

 
Fig. 7 Picture of optical system 

 
Each detector consists of a PIN-photodiode with integrated 

amplifier. These detectors are connected to the ADC which 
allows these signals to be transferred to a DSP for further 
signal processing. A set of elliptical parameters used in 
calculating the displacement.  

 
 
5. EXPERIMENT RESULT AND SIMULATION 

 
An ideal Lissajous pattern is produced by two identical 

interferometric signals(Fig. 8) that are in perfect quadrature 
and that have zero dc offsets. 

If these signals are used to produce a Lissajous patten, a 
rotating vector is obtained which describes a circle of radius 
R: 22

lr
IIR +=  

This is illustrated in Fig. 9, where we can see that one 
revolution of the vector is equivalent to an optical phase 
change of 2π. The instantaneous phase θ is usually obtained 
by the arctangent of 

rl II / . The fringe fraction is given by 

θ/2π: 
�  
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Fig. 8 Ideal phase quadrature interferometer signals 

 
 

),( lr II ),( lr II

 
Fig. 9 Ideal Lissajous pattern 

 
 

 
Fig. 10 Simulated realistic signals 

 
 

 
 

Fig. 11 Realistic Lissajous pattern 

 
 Fig. 12 Linear response to piezo device 

 
 

 
Fig. 13 residual deviation for the interferometer signals 

 
We also checked the cyclic error by analyzing the response of 
the interferometers in the single-axis moving. The 
displacement of the mirror is plotted as a function of time, as 
shown in Fig. 12. Almost linear response of the applied 
voltage to the piezo device with a constant increase was 
obtained. The slight curve actually exhibits nonlinear motion 
of the piezo device. Fig. 13 shows a plot of the residual 
deviation. The residual deviation is quite small with an 
amplitude of less than 50.1 nm. Its period of sinusoidal 
waveform of about 40nm indicates that the deviation is caused 
by the interferometer rather than the motion error of the 
mirror.  
 
 

6. CONCLUSIONS 
 

The high precision displacement measurement system using 
the real-time estimation and compensation system was 
researched in this paper. The conclusions of this paper are as 
follows: 
(1) The high precision displacement measurement system is 
designed and constructed in order to reduce outer 
disturbances. 
(2) The output signal parameter is estimated using the Kalman 
filter in real-time process. 
(3) The reference model is set to the perfect circular trajectory 
in Lissajous graph for designing the compensator. 
(4) It is verified that the proposed error compensator is 
effective method for decrease error in high precision 
displacement measurement system. 



ICCAS2003                           October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea      
 

ACKNOWLEDGMENTS 
 

This work has been sponsored by MOCIE(Ministry of 
Commerce, Industry and Energy) of Korea as a part of the 
project of "Development of Micro optical and thermofluidic 
devices with high functionality". 

 
 

REFERENCES 
 
[1] T. B. Eom and J. Y. Kim, “The dynamic compensation of 

nonlinearity in a homodyne laser interferometer”, KSPE, 
Vol. 18, No. 9, 2001.  

[2] Heydemann LM., “Determination and correction of 
quadrature fringe measurement errors in interferometers”, 
Applied Opt, Vol. 20, No. 19, pp. 3382–4, 1981.  

[3] Norman Bobroff, “Recent advances in displacement 
measuring interferometry”, Meas. Sci. Technol, Vol. 4, 
pp. 907-26, 1993.  

[4] Chien-ming Wu and Ching-shen Su, “Nonlinearity in 
measurements of length by optical interferometry”, Meas. 
Sci. Technol., Vol. 7, pp. 62– 6, 1996. 

[5] Frantisek Petru and Ondrej Cip, “Problems regarding 
linearity of data of a laser interferometer with a 
single-frequency laser”, Elsevier Sci. Inc., Vol. 23, pp. 
39–50, 1999. 

[6] Chien-ming Wu, Ching-Shen Su and Gwo-Sheng Peng, 
“Correction of nonlinearity in one-frequency optical 
interferometry”, Meas. Sci. Technol, Vol. 7, pp. 520–4, 
1996. 

[7] C. T. Farrell and M. A. Player, “Phase step measurement 
and variable step algorithms in phase-shifting 
interferometry”, Meas. Sci. Technol., Vol. 3, pp. 953-8, 
1992. 

[8] C. T. Farrell and M. A. Player, “Phase-step insensitive 
algorithms for phase-shifting interferometry”, Meas. Sci. 
Technol., Vol. 6, pp. 648-52, 1994. 

[9] Wansong Li and Xianyu Su, “Real-time calibration 
algorithm for phase shifting in phase-measuring 
profilometry”, SIPE, Vol. 40, pp. 761-6, 2001. 

[10] Karl Johan Astrom and Bjom Wittenmark, “Adaptive 
control (second edition)”, chapter, Addison-Wesley 
Publishing Company, 1995. 

 


	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 1225
	page21: 1226
	page31: 1227
	page41: 1228
	page51: 1229
	page61: 1230


